首页> 外文期刊>IEEE transactions on biomedical circuits and systems >Low-Power Hardware Implementation of a Support Vector Machine Training and Classification for Neural Seizure Detection
【24h】

Low-Power Hardware Implementation of a Support Vector Machine Training and Classification for Neural Seizure Detection

机译:低功耗硬件实现支持向量机训练和神经癫痫发作检测分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a low power support vector machine (SVM) training, feature extraction, and classification algorithm are hardware implemented in a neural seizure detection application. The training algorithm used is the sequential minimal optimization (SMO) algorithm. The system is implemented on different platforms: such as field programmable gate array (FPGA), Xilinx Virtex-7 and application specific integrated circuit (ASIC) using hardware-calibrated UMC 65nm CMOS technology. The implemented training hardware is introduced as an accelerator intellectual property (IP), especially in the case of large number of training sets, such as neural seizure detection. Feature extraction and classification blocks are implemented to achieve the best trade-off between sensitivity and power consumption. The proposed seizure detection system achieves a sensitivity around 96.77 when tested with the implemented linear kernel classifier. A power consumption evaluation is performed on both the ASIC and FPGA platforms showing that the ASIC power consumption is improved by a factor of 2X when compared with the FPGA counterpart.
机译:本文中,低功率支持向量机(SVM)训练,特征提取和分类算法是在神经癫痫发作检测应用中实现的硬件。使用的训练算法是顺序最小优化(SMO)算法。该系统在不同的平台上实现:例如现场可编程门阵列(FPGA),Xilinx Virtex-7和应用特定的集成电路(ASIC)使用硬件校准的UMC 65nm CMOS技术。实施的培训硬件被引入作为加速器知识产权(IP),特别是在大量训练集的情况下,例如神经癫痫发作检测。采用特征提取和分类块以实现灵敏度和功耗之间的最佳权衡。当用实现的线性内核分类器测试时,所提出的癫痫发作检测系统达到96.77的灵敏度。在ASIC和FPGA平台上执行功耗评估,表明与FPGA对应物相比,ASIC功耗提高了2倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号