机译:低功耗硬件实现支持向量机训练和神经癫痫发作检测分类
German Univ Cairo Dept Elect New Cairo 11511 Egypt;
Cairo Univ Dept Elect & Commun Engn Giza 11114 Egypt;
Cairo Univ Dept Elect & Commun Engn Giza 11114 Egypt;
German Univ Cairo Dept Elect New Cairo 11511 Egypt|Tech Univ Darmstadt Integrated Elect Syst Lab D-64289 Darmstadt Germany;
King Abdullah Univ Sci & Technol Thuwal 23955 Saudi Arabia;
Cairo Univ Dept Elect & Commun Engn Giza 11114 Egypt|Univ Sci & Technol Nanotechnol & Nanoelect Program Zewail City Sci & Technol Giza 12578 Egypt;
Support vector machines; Training; Feature extraction; Hardware; Electroencephalography; Optimization; Field programmable gate arrays; Accelerator IP; ASIC; classification; feature extraction; FPGA; low power; sequential minimal optimization (SMO); support vector machine (SVM);
机译:用于片上培训和分类能力的级联支持向量机的硬件高效VLSI设计
机译:癫痫癫痫发作检测和眼睛状态的脑电图分类使用Jacobi多项式变换的复杂性和最小二乘支持向量机的测量分类
机译:双树复小波变换和最小二乘支持向量机在癫痫发作检测系统中对脑电信号的分类
机译:支持向量机的硬件加速癫痫发作检测系统
机译:基于集成神经记录平台的闭环癫痫假体低功率癫痫发作检测硬件的设计和开发
机译:实际实施现有吸烟检测管道并减少支持向量机训练语料库的要求
机译:基于深神经网络的损伤分类中使用支持向量机的解读模式的检测方法