首页> 外文期刊>IEEE transactions on biomedical circuits and systems >Online Learning and Classification of EMG-Based Gestures on a Parallel Ultra-Low Power Platform Using Hyperdimensional Computing
【24h】

Online Learning and Classification of EMG-Based Gestures on a Parallel Ultra-Low Power Platform Using Hyperdimensional Computing

机译:超大尺度计算在平行超低功率平台上基于EMG的手势的在线学习与分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a wearable electromyographic gesture recognition system based on the hyperdimensional computing paradigm, running on a programmable parallel ultra-low-power (PULP) platform. The processing chain includes efficient on-chip training, which leads to a fully embedded implementation with no need to perform any offline training on a personal computer. The proposed solution has been tested on 10 subjects in a typical gesture recognition scenario achieving 85% average accuracy on 11 gestures recognition, which is aligned with the state-of-the-art, with the unique capability of performing online learning. Furthermore, by virtue of the hardware friendly algorithm and of the efficient PULP system-on-chip (Mr. Wolf) used for prototyping and evaluation, the energy budget required to run the learning part with 11 gestures is 10.04 mJ, and 83.2 mu J per classification. The system works with a average power consumption of 10.4 mW in classification, ensuring around 29 h of autonomy with a 100 mAh battery. Finally, the scalability of the system is explored by increasing the number of channels (up to 256 electrodes), demonstrating the suitability of our approach as universal, energy-efficient biopotential wearable recognition framework.
机译:本文介绍了一种基于超多维计算范例的可穿戴电拍摄手势识别系统,在可编程并行超低功率(纸浆)平台上运行。处理链包括有效的片上培训,这导致完全嵌入的实现,无需对个人计算机执行任何离线训练。所提出的解决方案已经在典型的手势识别场景中测试了10个科目,以11个手势识别实现85%的平均精度,这与现有技术对齐,具有在线学习的独特能力。此外,凭借硬件友好算法和用于原型化和评估的有效纸浆系统(Wolf)的有效纸浆系统(Wolf先生),具有11个手势的学习部件所需的能量预算为10.04 MJ,83.2μmJ每分类。该系统在分类​​中的平均功耗为10.4 MW,确保100 MAH电池的自治约29小时。最后,通过增加通道数(最多256个电极),探讨了系统的可扩展性,证明了我们的方法作为通用,节能的生物能够可穿戴识别框架的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号