首页> 外文期刊>IEEE transactions on biomedical circuits and systems >A Unified Novel Neural Network Approach and a Prototype Hardware Implementation for Ultra-Low Power EEG Classification
【24h】

A Unified Novel Neural Network Approach and a Prototype Hardware Implementation for Ultra-Low Power EEG Classification

机译:一种用于超低功率脑电分类的统一新型神经网络方法和原型硬件实现

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a novel electroencephalogram (EEG) data classification scheme together with its implementation in hardware using an innovative approach. The proposed scheme integrates into a single, end-to-end trainable model a spatial filtering technique and a neural network based classifier. The spatial filters, as well as, the coefficients of the neural network classifier are simultaneously estimated during training. By using different time-locked spatial filters, we introduce for the first time the notion of "attention" in EEG processing, which allows for the efficient capturing of the temporal dependencies and/or variability of the EEG sequential data. One of the most important benefits of our approach is that the proposed classifier is able to construct highly discriminative features directly from raw EEG data and, at the same time, to exploit the function approximation properties of neural networks, in order to produce highly accurate classification results. The evaluation of the proposed methodology, using public available EEG datasets, indicates that it outperforms the standard EEG classification approach based on filtering and classification as two separated steps. Moreover, we present a prototype implementation of the proposed scheme in state-of-the-art reconfigurable hardware; our novel implementation outperforms by more than one order of magnitude, in terms of power efficiency, the conventional CPU-based approaches.
机译:本文介绍了一种新颖的脑电图(EEG)数据分类方案,以及使用创新方法在硬件中实现的方案。提出的方案将空间过滤技术和基于神经网络的分类器集成到单个端到端可训练模型中。在训练期间同时估计空间滤波器以及神经网络分类器的系数。通过使用不同的时间锁定空间滤波器,我们首次引入了EEG处理中的“注意”概念,该概念可有效捕获EEG顺序数据的时间依赖性和/或可变性。我们的方法最重要的好处之一是,提出的分类器能够直接从原始EEG数据中构造出高度可辨别的特征,同时能够利用神经网络的函数逼近特性,从而产生高度准确的分类结果。使用公开的EEG数据集对拟议方法进行的评估表明,该方法优于基于过滤和分类(两个独立步骤)的标准EEG分类方法。此外,我们在最先进的可重配置硬件中提出了该方案的原型实现。就功率效率而言,我们的新颖实现比传统的基于CPU的方法的性能高出一个以上数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号