首页> 外文期刊>IEEE transactions on biomedical circuits and systems >Analysis and Simulation of Capacitor-Less ReRAM-Based Stochastic Neurons for the in-Memory Spiking Neural Network
【24h】

Analysis and Simulation of Capacitor-Less ReRAM-Based Stochastic Neurons for the in-Memory Spiking Neural Network

机译:基于电容器的基于ReRAM的内存随机神经网络的随机神经元分析和仿真

获取原文
获取原文并翻译 | 示例

摘要

The stochastic neuron is a key for event-based probabilistic neural networks. We propose a stochastic neuron using a metal-oxide resistive random-access memory (ReRAM). The ReRAM's conducting filament with built-in stochasticity is used to mimic the neuron's membrane capacitor, which temporally integrates input spikes. A capacitor-less neuron circuit is designed, laid out, and simulated. The output spiking train of the neuron obeys the Poisson distribution. Using the 65-nm CMOS technology node, the area of the neuron is 14 × 5 μm2, which is one ninth the size of a 1-pF capacitor. The average power consumption of the neuron is 1.289 μW. We introduce the neural array-A modified one-transistor-one-ReRAM (1T1R) crossbar that integrates the ReRAM neurons with ReRAM synapses to form a compact and energy efficient in-memory spiking neural network. A spiking deep belief network (DBN) with a noisy rectified linear unit (NReLU) is trained and mapped to the spiking DBN using the proposed ReRAM neurons. Simulation results show that the ReRAM neuron-based DBN is able to recognize the handwritten digits with 94.7% accuracy and is robust against the ReRAM process variation effect.
机译:随机神经元是基于事件的概率神经网络的关键。我们提出了一种使用金属氧化物电阻随机存取存储器(ReRAM)的随机神经元。具有内置随机性的ReRAM导电细丝用于模仿神经元的膜状电容器,该电容器暂时整合了输入尖峰信号。设计,布局和仿真无电容器神经元电路。神经元的输出峰值序列服从泊松分布。使用65纳米CMOS技术节点,神经元的面积为14×5μm n 2 n,它是1-pF电容器的十分之一。神经元的平均功耗为1.289μW。我们介绍了将ReRAM神经元与ReRAM突触相集成以形成紧凑且节能的内存中尖峰神经网络的神经阵列-A改良型单晶体管-一个ReRAM(1T1R)交叉开关。使用建议的ReRAM神经元训练带有噪声的线性单元(NReLU)的尖峰深度信念网络(DBN)并将其映射到尖峰DBN。仿真结果表明,基于ReRAM神经元的DBN能够以94.7%的精度识别手写数字,并且对ReRAM过程变化的影响具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号