首页> 外文期刊>IEEE signal processing letters >Combining of Multiple Deep Networks via Ensemble Generalization Loss, Based on MRI Images, for Alzheimer's Disease Classification
【24h】

Combining of Multiple Deep Networks via Ensemble Generalization Loss, Based on MRI Images, for Alzheimer's Disease Classification

机译:基于MRI图像的集合泛化损失,对阿尔茨海默病分类的组合通过集合概括损失组合

获取原文
获取原文并翻译 | 示例

摘要

This letter proposes a novel way of using an ensemble of multiple deep convolutional neural networks (DCNNs) for Alzheimer's disease classification, based on magnetic resonance imaging (MRI) images. To create this ensemble of DCNNs, we propose to combine the use of multiple MRI projections (as input) with that of different DCNN architectures to increase the deep ensemble diversity. In particular, to find the optimal fusion weights of the DCNN members, we designed a novel deep ensemble generalization loss, which accounts for interaction and cooperation during the optimal weight search. The optimization framework, equipped with our ensemble generalization loss, was formulated and solved using the sequential quadratic programming. Through this method, we achieved optimal DCNN fusion weights (i.e., a high generalization performance). The experimental results showed that our proposed DCNN ensemble outperforms current deep learning-based methods: it is able to produce state-of-the-art results on the Alzheimer's disease neuroimaging initiative (ADNI) dataset.
机译:本次信提出了一种基于磁共振成像(MRI)图像的阿尔茨海默病分类的多个深卷积神经网络(DCNNS)的新颖的方式。要创建DCNNS的该集合,我们建议将多个MRI投影(作为输入)与不同的DCNN架构中的使用相结合,以增加深度集成的多样性。特别是,为了找到DCNN成员的最佳融合重量,我们设计了一种新的深度集成概括损失,其占最佳重量搜索期间的互动和合作。配备有我们的集合泛化损耗的优化框架,使用顺序二次编程制定和解决。通过这种方法,我们实现了最佳的DCNN融合权重(即,高泛化性能)。实验结果表明,我们提出的DCNN集合优于当前基于深度学习的方法:它能够在阿尔茨海默病神经影像倡议(ADNI)数据集上产生最先进的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号