首页> 外文期刊>IEEE signal processing letters >Pyramid-Structured Depth MAP Super-Resolution Based on Deep Dense-Residual Network
【24h】

Pyramid-Structured Depth MAP Super-Resolution Based on Deep Dense-Residual Network

机译:基于深度密集残差网络的金字塔结构深度MAP超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Although deep convolutional neural networks (DCNN) show significant improvement for single depth map (SD) super-resolution (SR) over the traditional counterparts, most SDSR DCNNs do not reuse the hierarchical features for depth map SR resulting in blurred high-resolution (HR) depth maps. They always stack convolutional layers to make network deeper and wider. In addition, most SDSR networks generate HR depth maps at a single level, which is not suitable for large up-sampling factors. To solve these problems, we present pyramid-structured depth map super-resolution based on deep dense-residual network. Specially, our networks are made up of dense residual blocks that use densely connected layers and residual learning to model the mapping between high-frequency residuals and low-resolution (LR) depth map. Furthermore, based on the pyramid structure, our network can progressively generate depth maps of various levels by taking advantages of features from different levels. The proposed network adopts a deep supervision scheme to reduce the difficulty of model training and further improve the performance. The proposed method is evaluated on Middlebury datasets which shows improved performance compared with 6 state-of-the-art methods.
机译:尽管深卷积神经网络(DCNN)在单深度图(SD)超分辨率(SR)方面比传统副本有了显着改进,但是大多数SDSR DCNN并未将深度图SR的层次结构重复使用,导致高分辨率模糊(HR )深度图。它们总是堆叠卷积层,以使网络更深,更宽。另外,大多数SDSR网络会在单个级别上生成HR深度图,这不适用于较大的上采样因子。为了解决这些问题,我们提出了基于深度密集残差网络的金字塔结构深度图超分辨率。特别地,我们的网络由密集的残差块组成,这些块使用密集的连接层和残差学习来建模高频残差和低分辨率(LR)深度图之间的映射。此外,基于金字塔结构,我们的网络可以利用不同级别的特征逐步生成各个级别的深度图。拟议的网络采用深度监督方案,以减少模型训练的难度并进一步提高性能。该方法在Middlebury数据集上进行了评估,与6种最新方法相比,该方法显示出更高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号