首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Multi-Scale Frequency Reconstruction for Guided Depth Map Super-Resolution via Deep Residual Network
【24h】

Multi-Scale Frequency Reconstruction for Guided Depth Map Super-Resolution via Deep Residual Network

机译:通过深度剩余网络引导深度图超分辨率的多尺度频率重构

获取原文
获取原文并翻译 | 示例

摘要

The depth maps obtained by the consumer-level sensors are always noisy in the low-resolution (LR) domain. Existing methods for the guided depth super-resolution, which are based on the pre-defined local and global models, perform well in general cases (e.g., joint bilateral filter and Markov random field). However, such model-based methods may fail to describe the potential relationship between RGB-D image pairs. To solve this problem, this paper proposes a data-driven approach based on the deep convolutional neural network with global and local residual learning. It progressively upsamples the LR depth map guided by the high-resolution intensity image in multiple scales. A global residual learning is adopted to learn the difference between the ground truth and the coarsely upsampled depth map, and the local residual learning is introduced in each scale-dependent reconstruction sub-network. This scheme can restore the depth structure from coarse to fine via multi-scale frequency synthesis. In addition, batch normalization layers are used to improve the performance of depth map denoising. Our method is evaluated in noise-free and noisy cases. A comprehensive comparison against 17 state-of-the-art methods is carried out. The experimental results show that the proposed method has faster convergence speed as well as improved performances based on the qualitative and quantitative evaluations.
机译:消费级别传感器获得的深度映射在低分辨率(LR)域中始终嘈杂。基于预定义的本地和全球模型的引导深度超分辨率的现有方法在一般情况下表现良好(例如,联合双边滤波器和马尔可夫随机场)。然而,这种基于模型的方法可能无法描述RGB-D图像对之间的潜在关系。为了解决这个问题,本文提出了一种基于具有全球和局部剩余学习的深度卷积神经网络的数据驱动方法。它逐渐上升高了多个尺度的高分辨率强度图像引导的LR深度图。采用全局剩余学习来学习地面真理和粗地采样的深度图之间的差异,并且在每个刻度依赖的重建子网中引入了本地剩余学习。该方案可以通过多尺度频率合成将深度结构恢复到精细的深度。此外,批量归一化层用于提高深度图去噪的性能。我们的方法在无噪声和嘈杂的情况下评估。进行了全面的针对17项最先进的方法进行比较。实验结果表明,该方法具有更快的收敛速度以及基于定性和定量评估的性能提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号