首页> 外文期刊>IEEE signal processing letters >Fast likelihood computation techniques in nearest-neighbor basedsearch for continuous speech recognition
【24h】

Fast likelihood computation techniques in nearest-neighbor basedsearch for continuous speech recognition

机译:基于最近邻居的连续语音识别中的快速似然计算技术

获取原文
获取原文并翻译 | 示例

摘要

This paper describes two effective algorithms that reduce thencomputational complexity of state likelihood computation innmixture-based Gaussian speech recognition systems. We consider anbaseline recognition system that uses nearest-neighbor search andnpartial distance elimination (PDE) to compute state likelihoods. Thenfirst algorithm exploits the high dependence exhibited among subsequentnfeature vectors to predict the best scoring mixture for each state. Thenmethod, termed best mixture prediction (BMP), leads to further speednimprovement in the PDE technique. The second technique, termed featurencomponent reordering (FCR), takes advantage of the variable contributionnlevels made to the final distortion score for each dimension of thenfeature and mean space vectors. The combination of two techniques withnPDE reduces the computational time for likelihood computation by 29.8%nover baseline likelihood computation. The algorithms are shown to yieldnthe same accuracy level without further memory requirements for thenNovember 1992 ARPA Wall Street Journal (WSJ) task
机译:本文介绍了两种有效的算法,它们可以降低基于混合的状态似然计算的高斯语音识别系统的计算复杂性。我们考虑一个基线识别系统,该系统使用最近邻居搜索和部分距离消除(PDE)来计算状态似然。然后,第一个算法利用随后的特征向量之间表现出的高依赖性来预测每种状态的最佳得分组合。然后,称为最佳混合物预测(BMP)的方法导致PDE技术的进一步速度提高。第二种技术称为特征分量重排序(FCR),它针对特征和平均空间矢量的每个维度,利用了对最终失真分数的可变贡献水平。两种技术与nPDE的组合使基线似然性计算的似然性计算时间减少了29.8%。该算法显示出相同的精度水平,而对于1992年11月的ARPA华尔街日报(WSJ)任务没有进一步的内存要求

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号