首页> 外文期刊>IEEE signal processing letters >A Unified Convolutional Beamformer for Simultaneous Denoising and Dereverberation
【24h】

A Unified Convolutional Beamformer for Simultaneous Denoising and Dereverberation

机译:用于同时去噪和去混响的统一卷积波束形成器

获取原文
获取原文并翻译 | 示例

摘要

This letter proposes a method for estimating a convolutional beamformer that can perform denoising and dereverberation simultaneously in an optimal way. The application of dereverberation based on a weighted prediction error (WPE) method followed by denoising based on a minimum variance distortionless response (MVDR) beamformer has conventionally been considered a promising approach, however, the optimality of this approach cannot be guaranteed. To realize the optimal integration of denoising and dereverberation, we present a method that unifies the WPE dereverberation method and a variant of the MVDR beamformer, namely a minimum power distortionless response beamformer, into a single convolutional beamformer, and we optimize it based on a single unified optimization criterion. The proposed beamformer is referred to as a weighted power minimization distortionless response beamformer. Experiments show that the proposed method substantially improves the speech enhancement performance in terms of both objective speech enhancement measures and automatic speech recognition performance.
机译:这封信提出了一种估计卷积波束形成器的方法,该方法可以以最佳方式同时执行去噪和去混响。传统上,基于加权预测误差(WPE)方法的去混响的应用以及基于最小方差无失真响应(MVDR)波束形成器的去噪的应用通常被认为是一种有前途的方法,但是,不能保证这种方法的最优性。为了实现去噪和去混响的最佳集成,我们提出了一种将WPE去混响方法和MVDR波束形成器的一种变体(即最小功率无失真响应波束形成器)统一到单个卷积波束形成器中的方法,并基于单个卷积波束形成器进行了优化。统一优化标准。所提出的波束形成器被称为加权功率最小化无失真响应波束形成器。实验表明,该方法从客观的语音增强措施和自动语音识别性能两方面都大大提高了语音增强性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号