首页> 外文期刊>IEEE signal processing letters >Convolutive Blind Source Separation Based on Disjointness Maximization of Subband Signals
【24h】

Convolutive Blind Source Separation Based on Disjointness Maximization of Subband Signals

机译:基于子带信号不相交最大化的卷积盲源分离

获取原文
获取原文并翻译 | 示例

摘要

The concept of disjoint component analysis (DCA) is based on the fact that different speech or audio signals are typically more disjoint than mixtures of them. This letter studies the problem of blind separation of convolutive mixtures through the subband-wise maximization of the disjointness of time-frequency representations of the signals. In our approach, we first define a frequency-dependent measure representing the closeness to disjointness of a group of subband signals. Then, this frequency-dependent measure is integrated to form an objective function that only depends on the time-domain parameters of the separation system. Lastly, an efficient natural-gradient-based learning rule is developed for the update of the separation-system coefficients.
机译:不相交成分分析(DCA)的概念基于以下事实:不同的语音或音频信号通常比它们的混合更不相交。这封信通过信号的时频表示的不相交的子带最大化来研究卷积混合物的盲分离问题。在我们的方法中,我们首先定义一个频率相关的度量,该度量表示一组子带信号与不相交的接近度。然后,将这种与频率相关的度量进行积分以形成仅依赖于分离系统的时域参数的目标函数。最后,开发了一种有效的基于自然梯度的学习规则来更新分离系统系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号