首页> 外文期刊>Signal Processing Letters, IEEE >Speech Enhancement Based on Minima Controlled Recursive Averaging Incorporating Second-Order Conditional MAP Criterion
【24h】

Speech Enhancement Based on Minima Controlled Recursive Averaging Incorporating Second-Order Conditional MAP Criterion

机译:基于结合二阶条件MAP准则的最小控制递归平均的语音增强

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we propose a novel method to improve the minima controlled recursive averaging (MCRA) based on the second-order conditional maximum a posteriori (CMAP). From an investigation of the previous MCRA scheme, it is discovered that the MCRA method cannot take full consideration of the inter-frame correlation of voice activity since the noise power estimate is adjusted by the speech presence probability depending on a current observation. To avoid this phenomenon, we propose the MCRA approach incorporating the second-order CMAP criterion in which the noise power estimate is obtained using the speech presence probability conditioned on both the current observation and the speech activity decision in the previous two frames. Experimental results show that the proposed MCRA technique based on second-order CMAP yields better results compared to the previous MCRA method in speech enhancement.
机译:在这封信中,我们提出了一种基于二阶条件最大后验(CMAP)改进最小控制递归平均(MCRA)的新方法。从对以前的MCRA方案的研究中发现,由于噪声功率估计是根据当前的观察通过语音存在概率来调整的,因此MCRA方法不能完全考虑语音活动的帧间相关性。为了避免这种现象,我们提出了结合二阶CMAP准则的MCRA方法,其中使用以当前观察结果和前两个帧中的语音活动决策为条件的语音存在概率来获得噪声功率估计。实验结果表明,相比于以前的MCRA方法,基于二阶CMAP的MCRA技术产生了更好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号