首页> 外文会议>IEEE International Conference on Acoustics, Speech and Signal Processing;ICASSP 2009 >Speech enhancement based on minima controlled recursive averaging incorporating conditional maximum a posteriori criterion
【24h】

Speech enhancement based on minima controlled recursive averaging incorporating conditional maximum a posteriori criterion

机译:基于结合条件最大后验准则的最小控制递归平均的语音增强

获取原文

摘要

In this paper, we propose a novel approach to improve the performance of minima controlled recursive averaging (MCRA) based on a conditional maximum a posteriori (MAP) criterion. From an investigation of the MCRA scheme, it is discovered that MCRA method cannot take full consideration of the inter-frame correlation of voice activity since the noise power estimate is adjusted by the speech presence probability depending on an observation of the current frame. To avoid this phenomenon, the proposed MCRA approach incorporates the conditional MAP criterion in which the noise power estimate is obtained using the speech presence probability conditioned on both the current observation and the speech activity decision in the previous frame Experimental results show that the proposed MCRA technique based on conditional MAP yields better results compared to the conventional MCRA method.
机译:在本文中,我们提出了一种基于条件最大后验(MAP)准则来改进最小控制递归平均(MCRA)性能的新颖方法。从对MCRA方案的研究中发现,MCRA方法不能完全考虑语音活动的帧间相关性,因为噪声功率估计是根据当前帧的观察通过语音存在概率来调整的。为了避免这种现象,建议的MCRA方法结合了条件MAP准则,其中使用当前帧的当前观测值和语音活动决策为条件的语音存在概率来获得噪声功率估计。实验结果表明,提出的MCRA技术与传统的MCRA方法相比,基于条件MAP的方法产生更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号