首页> 外文期刊>IEEE signal processing letters >Second-Order Volterra System Identification With Noisy Input–Output Measurements
【24h】

Second-Order Volterra System Identification With Noisy Input–Output Measurements

机译:输入输出测量噪声的二阶Volterra系统识别

获取原文
获取原文并翻译 | 示例

摘要

System identification with noisy input–output measurements has been dominantly addressed through the optimization of the mean-squared-error criterion (MSE), especially in adaptive filtering. MSE is known to provide models that approximate the conditional expectation of the target output given the input; however, when the input signal is also contaminated by noise—a frequent occurrence—MSE yields biased estimates of the model parameters with the severity of the bias dependent on the noise power. This drawback has been addressed in various ways, including errors-in-variables techniques. Recently, error whitening criterion (EWC) and associated adaptation algorithms were proposed to address this issue in linear system identification. We extend the applicability of the main concept behind EWC to the unbiased identification of order-2 Volterra series models of nonlinear dynamical systems. The extension does not apply to higher order Volterra models. The main contribution of this letter is a statistical criterion that can be utilized to identify analytically the true parameters of an order-2 Volterra model from noisy input–output data. We also support the theoretical results with simulations; however online learning algorithms that can be derived for the proposed criterion will not be addressed.
机译:通过均方误差标准(MSE)的优化,尤其是在自适应滤波中,解决了带有嘈杂输入输出测量的系统识别问题。众所周知,MSE提供的模型可以近似给出给定输入的目标输出的条件期望值。但是,当输入信号也被噪声污染时(频繁发生),MSE会产生模型参数的有偏估计,其偏倚的严重程度取决于噪声功率。已经以各种方式解决了该缺点,包括变量误差技术。最近,提出了误差白化准则(EWC)和相关的自适应算法来解决线性系统识别中的这一问题。我们将EWC背后的主要概念的适用性扩展到非线性动力学系统的2阶Volterra级数模型的无偏辨识。该扩展不适用于高阶Volterra模型。这封信的主要贡献是一个统计标准,该标准可用于从嘈杂的输入-输出数据中分析地识别2阶Volterra模型的真实参数。我们还通过仿真来支持理论结果;但是,不会针对建议的标准得出的在线学习算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号