首页> 美国卫生研究院文献>Biology Direct >Input-output relations in biological systems: measurement information and the Hill equation
【2h】

Input-output relations in biological systems: measurement information and the Hill equation

机译:生物系统中的投入产出关系:测量信息和希尔方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological systems produce outputs in response to variable inputs. Input-output relations tend to follow a few regular patterns. For example, many chemical processes follow the S-shaped Hill equation relation between input concentrations and output concentrations. That Hill equation pattern contradicts the fundamental Michaelis-Menten theory of enzyme kinetics. I use the discrepancy between the expected Michaelis-Menten process of enzyme kinetics and the widely observed Hill equation pattern of biological systems to explore the general properties of biological input-output relations. I start with the various processes that could explain the discrepancy between basic chemistry and biological pattern. I then expand the analysis to consider broader aspects that shape biological input-output relations. Key aspects include the input-output processing by component subsystems and how those components combine to determine the system’s overall input-output relations. That aggregate structure often imposes strong regularity on underlying disorder. Aggregation imposes order by dissipating information as it flows through the components of a system. The dissipation of information may be evaluated by the analysis of measurement and precision, explaining why certain common scaling patterns arise so frequently in input-output relations. I discuss how aggregation, measurement and scale provide a framework for understanding the relations between pattern and process. The regularity imposed by those broader structural aspects sets the contours of variation in biology. Thus, biological design will also tend to follow those contours. Natural selection may act primarily to modulate system properties within those broad constraints.
机译:生物系统根据可变输入产生输出。投入产出关系倾向于遵循一些规则的模式。例如,许多化学过程遵循输入浓度和输出浓度之间的S形Hill方程关系。希尔方程模式与酶动力学的基本米利斯-门滕理论相矛盾。我利用预期的酶动力学迈克尔尼斯-门腾过程与广泛观察到的生物系统的希尔方程模式之间的差异来探索生物投入-产出关系的一般性质。我从各种可以解释基本化学与生物学模式之间差异的过程开始。然后,我将分析扩展为考虑影响生物投入产出关系的更广泛方面。关键方面包括组件子系统的输入输出处理以及这些组件如何组合以确定系统的总体输入输出关系。这种聚集结构通常会对潜在的疾病强加规律性。当信息流经系统的各个组成部分时,聚合会通过分散信息来施加顺序。可以通过对测量和精度的分析来评估信息的耗散,这解释了为什么某些常见的缩放模式在输入输出关系中如此频繁地出现。我将讨论聚合,度量和规模如何为理解模式与过程之间的关系提供框架。这些更广泛的结构方面强加的规律性决定了生物学变异的轮廓。因此,生物学设计也将倾向于遵循那些轮廓。自然选择可能主要在这些广泛的约束范围内调节系统属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号