首页> 美国卫生研究院文献>PLoS Computational Biology >Logarithmic and Power Law Input-Output Relations in Sensory Systems with Fold-Change Detection
【2h】

Logarithmic and Power Law Input-Output Relations in Sensory Systems with Fold-Change Detection

机译:具有倍数变化检测的感官系统中的对数和幂律输入输出关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two central biophysical laws describe sensory responses to input signals. One is a logarithmic relationship between input and output, and the other is a power law relationship. These laws are sometimes called the Weber-Fechner law and the Stevens power law, respectively. The two laws are found in a wide variety of human sensory systems including hearing, vision, taste, and weight perception; they also occur in the responses of cells to stimuli. However the mechanistic origin of these laws is not fully understood. To address this, we consider a class of biological circuits exhibiting a property called fold-change detection (FCD). In these circuits the response dynamics depend only on the relative change in input signal and not its absolute level, a property which applies to many physiological and cellular sensory systems. We show analytically that by changing a single parameter in the FCD circuits, both logarithmic and power-law relationships emerge; these laws are modified versions of the Weber-Fechner and Stevens laws. The parameter that determines which law is found is the steepness (effective Hill coefficient) of the effect of the internal variable on the output. This finding applies to major circuit architectures found in biological systems, including the incoherent feed-forward loop and nonlinear integral feedback loops. Therefore, if one measures the response to different fold changes in input signal and observes a logarithmic or power law, the present theory can be used to rule out certain FCD mechanisms, and to predict their cooperativity parameter. We demonstrate this approach using data from eukaryotic chemotaxis signaling.
机译:两个主要的生物物理定律描述了对输入信号的感觉反应。一个是输入和输出之间的对数关系,另一个是幂律关系。这些定律有时分别称为韦伯-费希纳定律和史蒂文斯幂定律。这两个定律存在于各种各样的人类感觉系统中,包括听觉,视觉,味觉和体重感知。它们也发生在细胞对刺激的反应中。然而,这些定律的机理起源还没有被完全理解。为了解决这个问题,我们考虑一类表现出称为倍数变化检测(FCD)特性的生物回路。在这些电路中,响应动力学仅取决于输入信号的相对变化,而不取决于其绝对水平,该特性适用于许多生理和细胞感觉系统。我们分析地表明,通过改变FCD电路中的单个参数,对数关系和幂律关系都会出现。这些法律是Weber-Fechner和Stevens法律的修改版本。确定找到哪个定律的参数是内部变量对输出的影响的陡度(有效希尔系数)。该发现适用于生物系统中发现的主要电路架构,包括非相干前馈环路和非线性积分反馈环路。因此,如果测量一个对输入信号中不同倍数变化的响应并遵守对数或幂定律,则本理论可用于排除某些FCD机制,并预测其合作参数。我们展示了使用来自真核趋化信号的数据的这种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号