首页> 外文期刊>IEEE signal processing letters >James–Stein Type Center Pixel Weights for Non-Local Means Image Denoising
【24h】

James–Stein Type Center Pixel Weights for Non-Local Means Image Denoising

机译:用于非局部均值图像消噪的James–Stein类型中心像素权重

获取原文
获取原文并翻译 | 示例

摘要

Non-Local Means (NLM) and its variants have proven to be effective and robust in many image denoising tasks. In this letter, we study approaches to selecting center pixel weights (CPW) in NLM. Our key contributions are 1) we give a novel formulation of the CPW problem from a statistical shrinkage perspective; 2) we construct the James-Stein shrinkage estimator in the CPW context; and 3) we propose a new local James-Stein type CPW (LJSCPW) that is locally tuned for each image pixel. Our experimental results showed that compared to existing CPW solutions, the LJSCPW is more robust and effective under various noise levels. In particular, the NLM with the LJSCPW attains higher means with smaller variances in terms of the peak signal and noise ratio (PSNR) and structural similarity (SSIM), implying it improves the NLM denoising performance and makes the denoising less sensitive to parameter changes.
机译:在许多图像去噪任务中,非局部均值(NLM)及其变体已被证明是有效且健壮的。在这封信中,我们研究了在NLM中选择中心像素权重(CPW)的方法。我们的主要贡献是:1)从统计收缩的角度提出了CPW问题的新颖表达; 2)我们在CPW上下文中构造James-Stein收缩估计量; 3)我们提出了一种新的本地James-Stein型CPW(LJSCPW),它针对每个图像像素进行了本地调整。我们的实验结果表明,与现有的CPW解决方案相比,LJSCPW在各种噪声水平下都更加健壮和有效。特别是,具有LJSCPW的NLM在峰值信号和噪声比(PSNR)和结构相似性(SSIM)方面具有更高的均值和较小的方差,这意味着它可以提高NLM的去噪性能,并使去噪对参数变化的敏感性降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号