首页> 外文期刊>Signal Processing Letters, IEEE >From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition
【24h】

From Local Geometry to Global Structure: Learning Latent Subspace for Low-resolution Face Image Recognition

机译:从局部几何到全局结构:学习潜在子空间以实现低分辨率人脸图像识别

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we propose a novel approach for learning coupled mappings to improve the performance of low-resolution (LR) face image recognition. The coupled mappings aim to project the LR probe images and high-resolution (HR) gallery images into a unified latent subspace, which is efficient to measure the similarity of face images with different resolutions. In the training phase, we first construct local optimization for each training sample according to the relationship of neighboring data points. The local optimization aims to: (1) ensure the consistency for each LR face image and corresponding HR one; (2) model the intrinsic geometric structure between each given sample and its neighbors; and (3) preserve the discriminative information across different subjects. We finally incorporate the local optimizations together for building the global structure. The coupled mappings can be learned by solving a standard eigen-decomposition problem, which avoids the small-sample-size problem. Experimental results demonstrate the effectiveness of the proposed method on public face databases.
机译:在这封信中,我们提出了一种新颖的方法来学习耦合映射,以改善低分辨率(LR)人脸图像识别的性能。耦合映射旨在将LR探测器图像和高分辨率(HR)画廊图像投影到统一的潜在子空间中,这可以有效地测量具有不同分辨率的面部图像的相似性。在训练阶段,我们首先根据邻近数据点的关系为每个训练样本构造局部优化。局部优化的目的是:(1)确保每个LR人脸图像和对应的HR的一致性; (2)建模每个给定样本与其邻居之间的固有几何结构; (3)保留不同主题之间的区别信息。最后,我们将局部优化组合在一起以构建全局结构。可以通过解决标准的特征分解问题来学习耦合映射,这避免了小样本大小的问题。实验结果证明了该方法在人脸数据库中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号