首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >A geometry force field which converts low-resolution X-ray models to structures with properties found at ultra high resolution
【2h】

A geometry force field which converts low-resolution X-ray models to structures with properties found at ultra high resolution

机译:几何力场将低分辨率X射线模型转换为具有超高分辨率特性的结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A geometry optimization force field was developed using ultra high-resolution structures and tested using high- and low-resolution X-ray structures. Protein and small molecule X-ray data was used. When applied to ultra high-resolution structures the force field conserves the internal geometry and local strain energy. When applied to low-resolution structures there is a small change in geometry accompanied by a large drop in local strain energy. Although optimization causes only small structural changes in low-resolution X-ray models, it dramatically modifies profiles for hydrogen bonding, Van der Waals contact, bonded geometry, and local strain energy, making them almost indistinguishable from those found at high resolution. Further insight into the effect of the force field was obtained by comparing geometries of homologous proteins before and after geometry optimization. Optimization causes homologous regions of structures to become similar in internal geometry and energies. Once again, the changes only require small atomic movements. These findings provide insights into the structure of molecular complexes. The new force field contains only short-range interatomic potential functions. Its effectiveness shows that local geometries are determined by short-range interactions which are well modeled by the force field. Potential applications of this study include detection of possible structural errors, correction of errors with minimal change in geometry, improved understanding and prediction of the effects of modifying ligands or proteins, and computational addition of structural water.
机译:使用超高分辨率结构开发了几何优化力场,并使用高分辨率和低分辨率X射线结构对其进行了测试。使用蛋白质和小分子X射线数据。当应用于超高分辨率结构时,力场可以保留内部几何形状和局部应变能。当应用于低分辨率结构时,几何形状的变化很小,而局部应变能却大大下降。尽管优化只在低分辨率X射线模型中引起很小的结构变化,但它极大地修改了氢键,范德华接触,键合几何形状和局部应变能的分布,使其与高分辨率下的分辨几乎没有区别。通过比较几何优化前后同源蛋白的几何结构,可以进一步了解力场的影响。优化导致结构的同源区域在内部几何形状和能量上变得相似。再一次,这些变化只需要很小的原子运动。这些发现提供了对分子复合物结构的见解。新的力场仅包含短距离原子间势函数。它的有效性表明,局部几何形状是由短程相互作用确定的,而短程相互作用可以通过力场很好地建模。该研究的潜在应用包括检测可能的结构错误,以最小的几何变化校正错误,改进对配体或蛋白质修饰作用的理解和预测,以及计算出的结构水含量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号