首页> 外文期刊>Signal Processing Letters, IEEE >On Maximum-Likelihood Methods for Localizing More Sources Than Sensors
【24h】

On Maximum-Likelihood Methods for Localizing More Sources Than Sensors

机译:最大似然方法用于定位比传感器更多的源

获取原文
获取原文并翻译 | 示例

摘要

This letter offers several new insights into the maximum-likelihood direction-of-arrival (DOA) estimation problem, when the number of sources exceeds the number of sensors. Two maximum-likelihood problems are studied: one for estimating the Toeplitz-structured coarray covariance matrix from the measurements, and the other for estimating the DOAs directly from the measurements. We establish the equivalence of both problems when the number of sources is assumed to be unknown and can potentially exceed the number of sensors. Additionally, it is shown that when the source waveforms satisfy certain orthogonality conditions, the Toeplitz-constrained maximum-likelihood covariance estimation framework provably produces the true DOAs without requiring to know the number of sources. When the number of sources exceeds the number of sensors, the maximum-likelihood algorithms studied in this letter outperform other recently studied methods, as demonstrated through numerical experiments.
机译:当信源的数量超过传感器的数量时,这封信提供了一些关于最大似然到达方向(DOA)估计问题的新见解。研究了两个最大似然问题:一个用于从测量值估计Toeplitz结构的协方差协方差矩阵,另一个用于直接从测量值估计DOA。当假设光源数量未知且可能超过传感器数量时,我们确定两个问题的等效性。此外,还表明,当源波形满足某些正交性条件时,Toeplitz约束的最大似然协方差估计框架可证明产生真实的DOA,而无需知道源的数量。当源的数量超过传感器的数量时,如数值实验所示,此信中研究的最大似然算法的性能优于最近研究的其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号