首页> 外文期刊>IEEE signal processing letters >Fusion-Based Variational Image Dehazing
【24h】

Fusion-Based Variational Image Dehazing

机译:基于融合的变分图像去雾

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel image-dehazing technique based on the minimization of two energy functionals and a fusion scheme to combine the output of both optimizations. The proposed fusion-based variational image-dehazing (FVID) method is a spatially varying image enhancement process that first minimizes a previously proposed variational formulation that maximizes contrast and saturation on the hazy input. The iterates produced by this minimization are kept, and a second energy that shrinks faster intensity values of well-contrasted regions is minimized, allowing to generate a set of difference-of-saturation (DiffSat) maps by observing the shrinking rate. The iterates produced in the first minimization are then fused with these DiffSat maps to produce a haze-free version of the degraded input. The FVID method does not rely on a physical model from which to estimate a depth map, nor it needs a training stage on a database of human-labeled examples. Experimental results on a wide set of hazy images demonstrate that FVID better preserves the image structure on nearby regions that are less affected by fog, and it is successfully compared with other current methods in the task of removing haze degradation from faraway regions.
机译:我们提出了一种基于最小化两个能量泛函和融合两种优化输出的融合方案的新颖图像去雾技术。提出的基于融合的变异图像去雾(FVID)方法是一种空间变化的图像增强过程,该过程首先最小化了先前提出的变异公式,从而使模糊输入的对比度和饱和度最大化。保持通过这种最小化产生的迭代,并且将收缩良好对比度区域的更快的强度值的第二能量最小化,从而允许通过观察收缩率来生成一组饱和差图(DiffSat)。然后将在第一次最小化中生成的迭代与这些DiffSat映射融合,以生成降级输入的无雾版本。 FVID方法不依赖于从中估算深度图的物理模型,也不需要在带有人类标签的示例的数据库上进行训练。在大量模糊图像上的实验结果表明,FVID可以更好地保留受雾影响较小的附近区域的图像结构,并且与其他现有方法相比,它在消除较远区域的雾度退化方面得到了成功的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号