首页> 外文期刊>IEEE signal processing letters >Automatic Semantic Parsing of the Ground Plane in Scenarios Recorded With Multiple Moving Cameras
【24h】

Automatic Semantic Parsing of the Ground Plane in Scenarios Recorded With Multiple Moving Cameras

机译:使用多台移动摄像机记录的场景中的地平面自动语义解析

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, video surveillance scenarios usually rely on manually annotated focus areas to constrain automatic video analysis tasks. Although manual annotation simplifies several stages of the analysis, its use hinders the scalability of the developed solutions and might induce operational problems in scenarios recorded with multiple moving cameras (MMCs). To tackle these problems, an automatic method for the cooperative extraction of areas of interest (AoIs) is proposed. Each captured frame is segmented into regions with semantic roles using a state-of-the-art method. Semantic evidences from different junctures, cameras, and points-of-view are, then, spatio-temporally aligned on a common ground plane. Experimental results on widely used datasets recorded with multiple but static cameras suggest that this process provides broader and more accurate AoIs than those manually defined in the datasets. Moreover, the proposed method naturally determines the projection of obstacles and functional objects in the scene, paving the road towards systems focused on the automatic analysis of human behavior. To our knowledge, this is the first study dealing with this problem, as evidenced by the lack of publicly available MMC benchmarks. To also cope with this issue, we provide a new MMC dataset with associated semantic scene annotations.
机译:如今,视频监视方案通常依赖于手动注释的焦点区域来约束自动视频分析任务。尽管手动注释简化了分析的几个阶段,但其使用阻碍了已开发解决方案的可伸缩性,并可能在使用多个移动摄像机(MMC)记录的场景中引发操作问题。为了解决这些问题,提出了一种自动提取感兴趣区域(AoIs)的自动方法。使用最新方法将每个捕获的帧分为具有语义角色的区域。然后,将来自不同接合点,摄像头和视点的语义证据在时空上对齐在公共接地平面上。在使用多个但静态相机记录的广泛使用的数据集上的实验结果表明,与在数据集中手动定义的AoI相比,此过程可提供更广泛,更准确的AoI。此外,所提出的方法自然地确定了场景中障碍物和功能对象的投影,从而为着重于自动分析人类行为的系统铺平了道路。据我们所知,这是第一个处理此问题的研究,这证明了缺乏公开可用的MMC基准。为了也解决这个问题,我们提供了一个新的MMC数据集以及相关的语义场景注释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号