首页> 外文期刊>IEEE signal processing letters >Speech Quality Assessment Over Lossy Transmission Channels Using Deep Belief Networks
【24h】

Speech Quality Assessment Over Lossy Transmission Channels Using Deep Belief Networks

机译:使用深信度网络的有损传输通道上的语音质量评估

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, there are several telephone services based on IP networks. However, the networks can present many disturbances, such as packet loss rate (PLR), which is one of the most impairing network factors. An impaired speech communication affects the users' quality of experience; hence, the assessment of speech quality is relevant to the telephone operators. Therefore, the determination of a methodology to predict a speech quality with a higher accuracy in telephone services is relevant. In this context, this letter introduces a novel nonintrusive speech quality classifier (SQC) model based on deep belief networks (DBN), in which the support vector machine with radial basis function kernel is the classifier applied in DBN, in order to identify four speech quality classes. A speech database was built, based on unimpaired speech files of public databases, in which different PLR models and values are applied, and a standardized intrusive method is used to calculate the index quality of each file. Results show that SQC largely overcomes the results obtained by ITU-T Recommendation P.563. Also, subjective tests are performed to validate the SQC performance, and it reached an accuracy of 95% on speech quality classification. Furthermore, a solution architecture is introduced, demonstrating the usefulness and flexibility of the proposed SQC.
机译:如今,有几种基于IP网络的电话服务。但是,网络可能会带来许多干扰,例如丢包率(PLR),这是最不利的网络因素之一。语音交流障碍会影响用户的体验质量;因此,语音质量的评估与电话运营商有关。因此,确定在电话服务中以更高的准确性预测语音质量的方法很重要。在此背景下,本文介绍了一种基于深度信念网络(DBN)的新型非介入语音质量分类器(SQC)模型,其中具有径向基函数核的支持向量机是应用于DBN的分类器,以识别四个语音质量课程。基于公共数据库不受影响的语音文件,构建了语音数据库,在其中应用了不同的PLR模型和值,并使用标准化的介入方法来计算每个文件的索引质量。结果表明,SQC在很大程度上克服了ITU-T P.563建议书获得的结果。另外,还进行了主观测试以验证SQC性能,并且在语音质量分类上达到了95%的准确性。此外,介绍了一种解决方案体系结构,证明了所提出的SQC的有用性和灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号