首页> 外文期刊>IEEE signal processing letters >Representation Space-Based Discriminative Graph Construction for Semisupervised Hyperspectral Image Classification
【24h】

Representation Space-Based Discriminative Graph Construction for Semisupervised Hyperspectral Image Classification

机译:半监督高光谱图像分类的基于表示空间的判别图构造

获取原文
获取原文并翻译 | 示例

摘要

Graph-based semisupervised learning methods have been successfully applied in hyperspectral image (HSI) classification with limited labeled samples. The critical step of graph-based methods is to learn a similarity graph, and numerous graph construction methods have been developed in recent years. However, existing approaches usually return a similarity matrix from the raw data space. In this letter, we propose a representation space-based discriminative graph for semisupervised HSI classification, which can learn the representations of samples and the similarity matrix of representations simultaneously. Moreover, we explicitly incorporate the probabilistic class relationship between sample and class, which can be estimated by the partial label information, into the above model to further boost the discriminability of graph. The experimental results on Hyperion and AVIRIS hyperspectral data demonstrate the effectiveness of the proposed approach.
机译:基于图的半监督学习方法已成功应用于具有有限标记样本的高光谱图像(HSI)分类。基于图的方法的关键步骤是学习相似图,并且近年来已经开发了许多图构建方法。但是,现有方法通常从原始数据空间返回相似性矩阵。在这封信中,我们提出了一种用于半监督HSI分类的基于表示空间的判别图,该图可同时学习样本的表示和表示的相似性矩阵。此外,我们将样本和类别之间的概率类别关系(可以通过部分标签信息估算)明确纳入了上述模型中,以进一步提高图形的可分辨性。 Hyperion和AVIRIS高光谱数据的实验结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号