首页> 外文期刊>IEEE Robotics and Automation Letters >DROW: Real-Time Deep Learning-Based Wheelchair Detection in 2-D Range Data
【24h】

DROW: Real-Time Deep Learning-Based Wheelchair Detection in 2-D Range Data

机译:DROW:二维范围数据中基于实时深度学习的轮椅检测

获取原文
获取原文并翻译 | 示例

摘要

We introduce the DROW detector, a deep learning-based object detector operating on 2-dimensional (2-D) range data. Laser scanners are lighting invariant, provide accurate 2-D range data, and typically cover a large field of view, making them interesting sensors for robotics applications. So far, research on detection in laser 2-D range data has been dominated by hand-crafted features and boosted classifiers, potentially losing performance due to suboptimal design choices. We propose a convolutional neural network (CNN) based detector for this task. We show how to effectively apply CNNs for detection in 2-D range data, and propose a depth preprocessing step and a voting scheme that significantly improve CNN performance. We demonstrate our approach on wheelchairs and walkers, obtaining state of the art detection results. Apart from the training data, none of our design choices limits the detector to these two classes, though. We provide a ROS node for our detector and release our dataset containing 464 k laser scans, out of which 24 k were annotated.
机译:我们介绍了DROW检测器,它是一种基于深度学习的对象检测器,可对二维(2-D)范围数据进行操作。激光扫描仪的照明不变,可提供准确的二维范围数据,并且通常会覆盖较大的视野,这使它们成为机器人应用的有趣传感器。到目前为止,在激光二维范围数据中进行检测的研究一直以手工制作的功能和增强的分类器为主导,由于设计欠佳,可能会降低性能。我们为此任务提出了基于卷积神经网络(CNN)的检测器。我们展示了如何有效地将CNN用于二维范围数据的检测,并提出了深度预处理步骤和投票方案,可以显着提高CNN性能。我们演示了在轮椅和助行器上的方法,获得了最新的检测结果。除了训练数据外,我们的设计选择都没有将探测器限制在这两类。我们为检测器提供了一个ROS节点,并发布了包含464 k激光扫描的数据集,其中有24 k被标注。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号