首页> 外文期刊>IEEE Robotics and Automation Letters >Probabilistic Multi-View Fusion of Active Stereo Depth Maps for Robotic Bin-Picking
【24h】

Probabilistic Multi-View Fusion of Active Stereo Depth Maps for Robotic Bin-Picking

机译:机械手机拾取有效立体声贴图的概率多视图融合

获取原文
获取原文并翻译 | 示例

摘要

The reliable fusion of depth maps from multiple viewpoints has become an important problem in many 3D reconstruction pipelines. In this work, we investigate its impact on robotic bin-picking tasks such as 6D object pose estimation. The performance of object pose estimation relies heavily on the quality of depth data. However, due to the prevalence of shiny surfaces and cluttered scenes, industrial grade depth cameras often fail to sense depth or generate unreliable measurements from a single viewpoint. To this end, we propose a novel probabilistic framework for scene reconstruction in robotic bin-picking. Based on active stereo camera data, we first explicitly estimate the uncertainty of depth measurements for mitigating the adverse effects of both noise and outliers. The uncertainty estimates are then incorporated into a probabilistic model for incrementally updating the scene. To extensively evaluate the traditional fusion approach alongside our own approach, we will release a novel representative dataset with multiple views for each bin and curated parts. Over the entire dataset, we demonstrate that our framework outperforms a traditional fusion approach by a 12.8% reduction in reconstruction error, and 6.1% improvement in detection rate. The dataset will be available at https://www.trailab.utias.utoronto.ca/robi.
机译:来自多个观点的可靠融合来自多个观点已成为许多3D重建管道中的重要问题。在这项工作中,我们调查其对诸如6D对象姿势估计的机器人垃圾拣选任务的影响。对象姿势估计的性能大量依赖于深度数据的质量。然而,由于闪亮表面和杂乱的场景的流行,工业级深度相机通常无法感测深度或从单个观点产生不可靠的测量。为此,我们向机械手机拣选中的场景重建提出了一种新的概率框架。基于有源立体声相机数据,我们首先明确估计深度测量的不确定性,以减轻噪声和异常值的不利影响。然后将不确定性估计结合到概率模型中,用于逐步更新场景。为了广泛地评估传统的融合方法以及我们自己的方法,我们将为每个BIN和策划部件发布一个具有多个视图的新型代表数据集。在整个数据集上,我们证明我们的框架优于传统的融合方法,减少重建误差的12.8%,检测率提高了6.1%。数据集将在https://www.trailab.utias.utorono.ca/robi上使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号