首页> 外文期刊>IEEE Robotics and Automation Letters >MPC-MPNet: Model-Predictive Motion Planning Networks for Fast, Near-Optimal Planning Under Kinodynamic Constraints
【24h】

MPC-MPNet: Model-Predictive Motion Planning Networks for Fast, Near-Optimal Planning Under Kinodynamic Constraints

机译:MPC-MPNET:模型 - 预测运动规划网络,用于快速,近乎最佳规划在Kinodynamic Surrults下

获取原文
获取原文并翻译 | 示例

摘要

Kinodynamic Motion Planning (KMP) is to find a robot motion subject to concurrent kinematics and dynamics constraints. To date, quite a few methods solve KMP problems and those that exist struggle to find near-optimal solutions and exhibit high computational complexity as the planning space dimensionality increases. To address these challenges, we present a scalable, imitation learning-based, Model-Predictive Motion Planning Networks framework that quickly finds near-optimal path solutions with worst-case theoretical guarantees under kinodynamic constraints for practical underactuated systems. Our framework introduces two algorithms built on a neural generator, discriminator, and a parallelizable Model Predictive Controller (MPC). The generator outputs various informed states towards the given target, and the discriminator selects the best possible subset from them for the extension. The MPC locally connects the selected informed states while satisfying the given constraints leading to feasible, near-optimal solutions. We evaluate our algorithms on a range of cluttered, kinodynamically constrained, and underactuated planning problems with results indicating significant improvements in computation times, path qualities, and success rates over existing methods.
机译:Kinodynamic Motion Planning(KMP)是找到一个机器人运动,以进行并发的运动学和动态约束。迄今为止,相当多的方法解决了KMP问题,而那些存在斗争寻找近最佳解决方案的问题,并在规划空间维度增加时表现出高计算复杂性。为了解决这些挑战,我们提出了一种可扩展,模仿的学习,模型预测的运动计划网络框架,可快速找到近最佳的路径解决方案,以近似的情况下的理论保证在实际的欠施系统中的电气动力学约束下。我们的框架介绍了在神经发生器,鉴别器和并行模型预测控制器(MPC)上构建的两种算法。发电机向给定的目标输出各种通知状态,并且鉴别器选择来自它们的最佳子集。 MPC本地连接所选的通知状态,同时满足给定的约束,导致可行,近最佳解决方案。我们在一系列杂乱的,动脉动力学限制和欠渎规的规划问题上评估了我们的算法,结果表明计算时间,路径质量和现有方法的成功率显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号