首页> 外文期刊>IEEE Robotics and Automation Letters >A Lightweight and Accurate Localization Algorithm Using Multiple Inertial Measurement Units
【24h】

A Lightweight and Accurate Localization Algorithm Using Multiple Inertial Measurement Units

机译:一种使用多种惯性测量单元的轻质和准确的定位算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel inertial-aided localization approach by fusing information from multiple inertial measurement units (IMUs) and exteroceptive sensors. IMU is a low-cost motion sensor which provides measurements on angular velocity and gravity compensated linear acceleration of a moving platform, and widely used in modern localization systems. To date, most existing inertial-aided localization methods exploit only one single IMU. While the single-IMU localization yields acceptable accuracy and robustness for different use cases, the overall performance can be further improved by using multiple IMUs. To this end, we propose a lightweight and accurate algorithm for fusing measurements from multiple IMUs and exteroceptive sensors, which is able to obtain noticeable performance gain without incurring additional computational cost. To achieve this, we first probabilistically map measurements from all IMUs onto a virtual IMU. This step is performed by stochastic estimation with least-square estimators and probabilistic marginalization of inter-IMU rotational accelerations. Subsequently, the propagation model for both state and error state of the virtual IMU is also derived, which enables the use of the classical filter-based or optimization-based sensor fusion algorithms for localization. Finally, results from both simulation and real-world tests are provided, which demonstrate that the proposed algorithm outperforms competing algorithms by noticeable margins.
机译:本文提出了一种通过从多个惯性测量单元(IMUS)和脱离感应传感器的信息来融合信息的新惯性辅助定位方法。 IMU是一种低成本的运动传感器,可对移动平台的角速度和重力补偿线性加速度提供测量,并广泛用于现代本地化系统。迄今为止,大多数现有的惯性辅助本地化方法只利用一个单一的IMU。虽然单一IMU定位产生不同用例的可接受的准确性和鲁棒性,但通过使用多个IMU可以进一步提高整体性能。为此,我们提出了一种轻量级和准确的算法,用于融合来自多个IMU和extleoceptive传感器的测量,这能够获得明显的性能增益,而不会产生额外的计算成本。为此,我们首先将所有IMU的概率映射到虚拟IMU上。该步骤由具有最小二乘估计的随机估计和IMU间旋转加速度的概率边缘化来执行。随后,还导出了用于虚拟IMU的状态和误差状态的传播模型,其能够使用基于经典的基于滤波器的或基于优化的传感器融合算法来定位。最后,提供了模拟和实际测试的结果,这表明所提出的算法优于竞争算法,通过明显的利润。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号