首页> 外文期刊>IEEE Robotics and Automation Letters >A Probabilistic Model-Based Online Learning Optimal Control Algorithm for Soft Pneumatic Actuators
【24h】

A Probabilistic Model-Based Online Learning Optimal Control Algorithm for Soft Pneumatic Actuators

机译:基于概率模型的在线学习优化控制算法,用于软气动执行器

获取原文
获取原文并翻译 | 示例

摘要

Soft robots are increasingly being employed in different fields and various designs are created to satisfy relevant requirements. The wide ranges of design bring challenges to soft robotic control in that a unified control framework is difficult to derive. Traditional model-driven approaches for soft robots are usually design-specific which highly depend on specific design structures. Our approach to such challenges involves a probabilistic model that learns a mapping from the soft actuator states and controls to the next states. Then an optimal control policy is derived by minimizing a cost function based on the probabilistic model. We demonstrate the efficiency of our approach through simulations with parameter analysis and real-robot experiments involving three different designs of soft pneumatic actuators. Comparisons with previous model-based controllers are also provided to show advantages of the proposed method. Overall, this work provides a promising design-independent control approach for the soft robotics community.
机译:软机器越来越多地用于不同的领域,并创建各种设计以满足相关要求。广泛的设计范围为软机器人控制带来挑战,因为统一的控制框架难以得出。用于软机器人的传统模式驱动方法通常是设计特定的,这高度依赖于特定的设计结构。我们对此挑战的方法涉及一个概率模型,用于从软执行器状态和控制到下一个状态的映射。然后通过基于概率模型最小化成本函数来导出最佳控制策略。我们通过使用参数分析和涉及三种不同设计的软充气执行器的实际机器人实验来展示我们方法的效率。还提供了与先前模型的控制器的比较,以显示所提出的方法的优点。总体而言,这项工作为软机器人社区提供了一个有希望的独立控制方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号