...
首页> 外文期刊>Selected Topics in Quantum Electronics, IEEE Journal of >Semiconductor Quantum Dot–Microcavities for Quantum Optics in Solid State
【24h】

Semiconductor Quantum Dot–Microcavities for Quantum Optics in Solid State

机译:半导体量子点–固态量子光学用微腔

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, exciting progress of quantum optics in solid state is reviewed. The focus is on semiconductor microcavities with self-assembled quantum dots embedded in the active layer. Due to enormous progress in semiconductor nanotechnology, such photonic structures have become a model system for the study of quantum optics on a scalable and integrable technology platform with high potential for future applications in quantum information technology. Quantum optical phenomena have become accessible due to 3-D confinement of light and matter on the length scale of their wavelength in state-of-the-art semiconductor micro- and nanostructures. This confinement leads to a quantization of the associated photonic and electronic energy levels and requires a quantum mechanical description of the system in the framework of cavity quantum electrodynamics (cQED). This approach considers the dipole interaction between two-level quantum emitters and discrete photonic states of a microcavity. Within the well-known Jaynes–Cummings model, the dipole interaction is described in terms of a coherent exchange of energy between the emitter and the resonator mode. This coherent interaction in the so-called strong coupling regime of cQED is reflected in a normal mode splitting, the vacuum Rabi splitting, of the involved modes and represents a central feature of quantum optics in solid state. Another important example of quantum optics in semiconductor nanostructures is the generation of nonclassical light in specific quantum devices. Of particular interest is the realization of Fock states which represent states containing a well-defined number of photons. Single-photon sources, for instance, allow for the generation of single photons on demand, which is highly desirable for quantum communication systems. In this context, this review paper will present recent experimental studies of quantum optics in solid state. This paper is meant for readers who would like to become familiar w- th this topic and for experts being interested in the progress in this field. It will cover a broad range of studies ranging from examples of fundamental light–matter interaction in the quantum limit to devices capable of emitting single photons and entangled photon pairs on demand.
机译:本文综述了固态量子光学的令人兴奋的进展。重点是在有源层中嵌入有自组装量子点的半导体微腔。由于半导体纳米技术的巨大进步,这样的光子结构已经成为用于在可伸缩且可集成的技术平台上研究量子光学的模型系统,具有在量子信息技术中的未来应用的巨大潜力。在最先进的半导体微结构和纳米结构中,由于光和物质在其波长的长度尺度上的3-D限制,使得量子光学现象变得可访问。这种限制导致对相关光子和电子能级的量化,并且需要在腔体量子电动力学(cQED)框架内对该系统进行量子力学描述。该方法考虑了两级量子发射器与微腔的离散光子状态之间的偶极相互作用。在著名的Jaynes-Cummings模型中,偶极子相互作用是根据发射器和谐振器模式之间能量的相干交换来描述的。在cQED的强耦合状态下,这种相干相互作用反映在所涉及模的正常模式分裂(真空Rabi分裂)中,代表了固态量子光学的主要特征。半导体纳米结构中量子光学的另一个重要例子是在特定量子器件中产生非经典光。特别令人感兴趣的是实现福克状态,该福克状态表示包含定义明确的光子数的状态。例如,单光子源允许按需生成单光子,这对于量子通信系统是非常需要的。在这种情况下,本文将介绍固态量子光学的最新实验研究。本文适用于希望对此主题熟悉的读者以及对这一领域的进展感兴趣的专家。它将涵盖范围广泛的研究,从量子极限中基本光-物质相互作用的示例到能够按需发射单光子和纠缠光子对的设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号