首页> 外文期刊>Selected Areas in Communications, IEEE Journal on >Energy-Optimal Distributed Algorithms for Minimum Spanning Trees
【24h】

Energy-Optimal Distributed Algorithms for Minimum Spanning Trees

机译:最小生成树的能量最佳分布式算法

获取原文
获取原文并翻译 | 示例

摘要

Traditionally, the performance of distributed algorithms has been measured in terms of time and message complexity.Message complexity concerns the number of messages transmitted over all the edges during the course of the algorithm. However, in energy-constrained ad hoc wireless networks (e.g., sensor networks), energy is a critical factor in measuring the efficiency of a distributed algorithm. Transmitting a message between two nodes has an associated cost (energy) and moreover this cost can depend on the two nodes (e.g., the distance between them among other things). Thus in addition to the time and message complexity, it is important to consider energy complexity that accounts for the total energy associated with the messages exchanged among the nodes in a distributed algorithm. This paper addresses the minimum spanning tree (MST) problem, a fundamental problem in distributed computing and communication networks. We study energy-efficient distributed algorithms for the Euclidean MST problem assuming random distribution of nodes. We show a non-trivial lower bound of <9;(log n) on the energy complexity of any distributed MST algorithm. We then give an energy-optimal distributed algorithm that constructs an optimal MST with energy complexity O(log n) on average and O(log n log log n) with high probability. This is an improvement over the previous best known bound on the average energy complexity of ¿(log2 n). Our energy-optimal algorithm exploits a novel property of the giant component of sparse random geometric graphs. All of the above results assume that nodes do not know their geometric coordinates. If the nodes know their own coordinates, then we give an algorithm with O(1) energy complexity (which is the best possible) that gives an O(1) approximation to the MST.
机译:传统上,分布式算法的性能是根据时间和消息复杂度来衡量的。消息复杂度涉及算法过程中在所有边缘上传输的消息数。然而,在能量受限的自组织无线网络(例如,传感器网络)中,能量是测量分布式算法的效率的关键因素。在两个节点之间发送消息具有相关的成本(能量),此外,该成本可能取决于两个节点(例如,它们之间的距离等)。因此,除了时间和消息复杂度之外,重要的是考虑能量复杂度,该能量复杂度考虑了与分布式算法中节点之间交换的消息相关的总能量。本文讨论了最小生成树(MST)问题,这是分布式计算和通信网络中的一个基本问题。我们研究了假设节点随机分布的欧氏MST问题的节能分布式算法。我们在任何分布式MST算法的能量复杂度上显示了<9;(log n)的非平凡下界。然后,我们给出了一种能量最优的分布式算法,该算法构造了平均能量复杂度为O(log n)且概率很高的O(log n log log n)的最优MST。这是对先前平均能量复杂度(log2 n)的最著名的改进。我们的能量优化算法利用了稀疏随机几何图的巨型成分的新颖性质。以上所有结果均假定节点不知道其几何坐标。如果节点知道它们自己的坐标,则我们给出一个O(1)能量复杂度(这是最好的)的算法,该算法为MST给出O(1)近似值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号