首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Parallel Morphological Endmember Extraction Using Commodity Graphics Hardware
【24h】

Parallel Morphological Endmember Extraction Using Commodity Graphics Hardware

机译:使用商品图形硬件的并行形态端元提取

获取原文
获取原文并翻译 | 示例

摘要

Spatial/spectral algorithms have been shown in previous work to be a promising approach to the problem of extracting image endmembers from remotely sensed hyperspectral data. Such algorithms map nicely on high-performance systems such as massively parallel clusters and networks of computers. Unfortunately, these systems are generally expensive and difficult to adapt to onboard data processing scenarios, in which low-weight and low-power integrated components are highly desirable to reduce mission payload. An exciting new development in this context is the emergence of graphics processing units (GPUs), which can now satisfy extremely high computational requirements at low cost. In this letter, we propose a GPU-based implementation of the automated morphological endmember extraction algorithm, which is used in this letter as a representative case study of joint spatial/spectral techniques for hyperspectral image processing. The proposed implementation is quantitatively assessed in terms of both endmember extraction accuracy and parallel efficiency, using two generations of commercial GPUs from NVidia. Combined, these parts offer a thoughtful perspective on the potential and emerging challenges of implementing hyperspectral imaging algorithms on commodity graphics hardware.
机译:在先前的工作中,空间/光谱算法已被证明是解决从遥感高光谱数据中提取图像端元的一种有前途的方法。这样的算法可以很好地映射到高性能系统上,例如大规模并行集群和计算机网络。不幸的是,这些系统通常很昂贵,并且难以适应机载数据处理方案,在该方案中,非常需要低重量和低功率的集成组件以减少任务有效载荷。在这种情况下,令人兴奋的新发展是图形处理单元(GPU)的出现,它们现在可以低成本满足极高的计算要求。在这封信中,我们提出了自动形态学端元提取算法的基于GPU的实现,该信纸在本信中用作对高光谱图像处理的联合空间/光谱技术的代表性案例研究。使用来自NVidia的两代商用GPU,根据端成员提取精度和并行效率进行了定量评估。结合起来,这些部分为在商品图形硬件上实现高光谱成像算法的潜在和新出现的挑战提供了周到的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号