首页> 外文期刊>Geoscience and Remote Sensing Letters, IEEE >Land Cover Classification for Remote Sensing Imagery Using Conditional Texton Forest With Historical Land Cover Map
【24h】

Land Cover Classification for Remote Sensing Imagery Using Conditional Texton Forest With Historical Land Cover Map

机译:使用具有历史土地覆盖图的有条件Texton森林进行遥感影像的土地覆盖分类

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we propose a “conditional texton forest” (CTF) method to utilize widely available historical land cover (HLC) maps in land use/cover classification on high-resolution images. The CTF is based on texton forest (TF), which is a popular and powerful method in image semantic segmentation due to its effective use of spatial contextual information, its high accuracy, and its fast speed in multiclass classification. The proposed CTF method nonparametrically aggregates a bank of TFs according to HLC information and uses the fact that different types of HLC follow different transition rules. The performance of CTF is compared to support vector machine (SVM), Markov random field (MRF), and a naive TF method which uses historical data directly as a feature channel. On average, CTF results in a 2%–5% higher classification accuracy than other classifiers in our experiment. The classifying speed of CTF is similar with TF, five times faster than MRF, and hundreds of times faster than SVM. Given the abundance of HLC data, the proposed method can be expected to be useful in a wide range of socioeconomic and environmental studies.
机译:在这封信中,我们提出了一种“有条件的文本森林”(CTF)方法,以便在高分辨率图像的土地使用/覆盖分类中利用广泛可用的历史土地覆盖(HLC)地图。 CTF基于文本森林(TF),由于其有效利用空间上下文信息,准确性高以及在多类分类中的快速性,它是图像语义分割中一种流行且强大的方法。所提出的CTF方法根据HLC信息非参数地聚集一堆TF,并利用以下事实:不同类型的HLC遵循不同的过渡规则。将CTF的性能与支持向量机(SVM),马尔可夫随机场(MRF)和将历史数据直接用作特征通道的朴素TF方法进行了比较。平均而言,在我们的实验中,CTF的分类精度比其他分类器高2%–5%。 CTF的分类速度与TF相似,比MRF快五倍,比SVM快数百倍。考虑到HLC数据的丰富性,可以预期所提出的方法可用于广泛的社会经济和环境研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号