首页> 美国卫生研究院文献>other >Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies
【2h】

Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

机译:雷达遥感在爱尔兰的森林覆盖率估算:森林覆盖率评估方法的比较分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting.
机译:森林覆盖物时空变化的量化是森林监测计划的重要组成部分。由于其无云能力,合成孔径雷达(SAR)是云量几乎恒定的国家中森林动态信息的理想来源。但是,很少有研究调查在森林稀疏和零散的景观中使用SAR进行森林覆盖率估算。在这项研究中,调查了L波段SAR在爱尔兰两个地区(朗福德和斯莱戈)的森林覆盖率估算的潜在用途,并将其与源自三个国家(Forestry2010,Prime2,国家森林清单)的一个森林覆盖率估算值进行了比较。 -欧洲(Forest Map 2006)和一种全球森林覆盖率(Global Forest Change)产品。评估了两种机器学习方法(随机森林和极端随机树)。随机森林和极度随机树的分类精度都很高(98.1–98.5%),两个分类器之间的差异很小(<0.5%)。分类过滤后级别的增加导致估计的森林面积减少,以及由SAR得出的森林覆盖图的整体准确性增加。所有森林覆盖产品均使用独立的验证数据集进行了评估。对于Longford地区,Forestry2010数据集的总体准确性最高(97.42%),而在Sligo中,Prime2数据集的总体准确性最高(97.43%),尽管基于SAR的森林图的准确性可比。我们的发现表明,星载雷达可以帮助零散景观中森林覆盖率较低的地区的清单。与国家和SAR衍生的森林图相比,全球和整个大陆的森林覆盖图所观察到的准确性降低,表明在将这些数据集用于国家报告时应谨慎行事。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号