首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >SAR Image Compression Using Multiscale Dictionary Learning and Sparse Representation
【24h】

SAR Image Compression Using Multiscale Dictionary Learning and Sparse Representation

机译:多尺度字典学习和稀疏表示的SAR图像压缩

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we focus on a new compression scheme for synthetic aperture radar (SAR) amplitude images. The last decade has seen a growing interest in the study of dictionary learning and sparse representation, which have been proved to perform well on natural image compression. Because of the special techniques of radar imaging, SAR images have some distinct properties when compared with natural images that can affect the design of a compression method. First, we introduce SAR properties, sparse representation, and dictionary learning theories. Second, we propose a novel SAR image compression scheme by using multiscale dictionaries. The experimental results carried out on amplitude SAR images reveal that, when compared with JPEG, JPEG2000, and a single-scale dictionary-based compression scheme, the proposed method is better for preserving the important features of SAR images with a competitive compression performance.
机译:在这封信中,我们将重点介绍用于合成孔径雷达(SAR)振幅图像的新压缩方案。在过去的十年中,人们对词典学习和稀疏表示的研究越来越感兴趣,事实证明它们在自然图像压缩方面表现良好。由于雷达成像的特殊技术,SAR图像与自然图像相比具有一些明显的特性,这会影响压缩方法的设计。首先,我们介绍SAR属性,稀疏表示和字典学习理论。其次,我们提出了一种使用多尺度字典的新颖SAR图像压缩方案。对幅度SAR图像进行的实验结果表明,与JPEG,JPEG2000和基于单比例字典的压缩方案相比,该方法更好地保留了具有竞争压缩性能的SAR图像的重要特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号