首页> 外文期刊>Geoscience and Remote Sensing Letters, IEEE >Unsupervised Classification of Fully Polarimetric SAR Images Based on Scattering Power Entropy and Copolarized Ratio
【24h】

Unsupervised Classification of Fully Polarimetric SAR Images Based on Scattering Power Entropy and Copolarized Ratio

机译:基于散射功率熵和共极化比的全极化SAR图像的无监督分类

获取原文
获取原文并翻译 | 示例

摘要

This letter presents a new unsupervised classification method for polarimetric synthetic aperture radar (POLSAR) images. Its novelties are reflected in three aspects: First, the scattering power entropy and the copolarized ratio are combined to produce initial segmentation. Second, an improved reduction technique is applied to the initial segmentation to obtain the desired number of categories. Finally, to improve the representation of each category, the data sets are classified by an iterative algorithm based on a complex Wishart density function. By using complementary information from the scattering power entropy and the copolarized ratio, the proposed method can increase the separability of terrains, which can be of benefit to POLSAR image processing. Three real POLSAR images, including the RADARSAT-2 C-band fully POLSAR image of western Xi'an, China, are used in the experiments. Compared with the other three state-of-the-art methods, $hbox{H}/alpha$ -Wishart method, Lee category-preserving classification method, and Freeman decomposition combined with the scattering entropy method, the final classification map based on the proposed method shows improvements in the accuracy and efficiency of the classification. Moreover, high adaptability and better connectivity are observed.
机译:这封信为极化合成孔径雷达(POLSAR)图像提供了一种新的无监督分类方法。它的新颖性体现在三个方面:首先,将散射功率熵和同极化比率结合起来以产生初始分割。其次,将改进的归约技术应用于初始分割以获得所需数量的类别。最后,为了改善每个类别的表示形式,通过基于复杂Wishart密度函数的迭代算法对数据集进行分类。通过利用来自散射功率熵和同极化比的补充信息,该方法可以提高地形的可分离性,这对POLSAR图像处理很有帮助。实验中使用了三个真实的POLSAR图像,包括中国西部的RADARSAT-2 C波段完全POLSAR图像。与其他三种最新方法($ hbox {H} / alpha $ -Wishart方法,Lee保留类别的分类方法以及结合散射熵方法的Freeman分解)相比,基于分类的最终分类图提出的方法显示了分类的准确性和效率的提高。而且,观察到高适应性和更好的连通性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号