首页> 外文期刊>Geoscience and Remote Sensing Letters, IEEE >Parsimonious Gaussian Process Models for the Classification of Hyperspectral Remote Sensing Images
【24h】

Parsimonious Gaussian Process Models for the Classification of Hyperspectral Remote Sensing Images

机译:高光谱遥感图像分类的简约高斯过程模型

获取原文
获取原文并翻译 | 示例

摘要

A family of parsimonious Gaussian process models for classification is proposed in this letter. A subspace assumption is used to build these models in the kernel feature space. By constraining some parameters of the models to be common between classes, parsimony is controlled. Experimental results are given for three real hyperspectral data sets, and comparisons are done with three other classifiers. The proposed models show good results in terms of classification accuracy and processing time.
机译:这封信提出了一个用于分类的简约高斯过程模型系列。子空间假设用于在内核特征空间中构建这些模型。通过将模型的某些参数约束为类之间的公共参数,可以控制简约性。给出了三个真实的高光谱数据集的实验结果,并与其他三个分类器进行了比较。提出的模型在分类精度和处理时间方面显示出良好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号