首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >A Target Detection Method Based on Low-Rank Regularized Least Squares Model for Hyperspectral Images
【24h】

A Target Detection Method Based on Low-Rank Regularized Least Squares Model for Hyperspectral Images

机译:基于低秩正则最小二乘模型的高光谱图像目标检测方法

获取原文
获取原文并翻译 | 示例

摘要

Target detection plays an important role in the field of hyperspectral image (HSI) remote sensing. In this letter, a novel matched subspace detector based on low-rank regularized least squares (LRLS-MSD) is proposed for hyperspectral target detection. As pixels in an HSI have global correlation and can be represented in subspace, the low-rank regularization is introduced in the least squares model. An effective algorithm is presented to solve the problem. Then, the detection results are generated according to the generalized likelihood ratio test with statistical hypotheses. The experimental results suggest an advantage of the low-rank regularization over other classical target detection methods.
机译:目标检测在高光谱图像(HSI)遥感领域中起着重要作用。在这封信中,提出了一种基于低秩正则最小二乘(LRLS-MSD)的新型匹配子空间检测器,用于高光谱目标检测。由于HSI中的像素具有全局相关性并且可以在子空间中表示,因此在最小二乘模型中引入了低秩正则化。提出了一种有效的算法来解决该问题。然后,根据具有统计假设的广义似然比检验生成检测结果。实验结果表明,与其他经典目标检测方法相比,低秩正则化具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号