首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Bayesian Inference for Inversion in Synthetic Aperture Imaging Radiometry
【24h】

Bayesian Inference for Inversion in Synthetic Aperture Imaging Radiometry

机译:合成孔径成像放射学反演的贝叶斯推断

获取原文
获取原文并翻译 | 示例

摘要

The inverse problem of synthetic aperture imaging radiometers (SAIRs) has been demonstrated to be not well posed. The regularization methods are crucial for providing unique and stable solutions in the reconstruction of radiometric brightness temperature (BT) maps. Different to deterministic ones, a new approach is presented by referring to the rule of Bayesian inference, providing a probability model of regularized constraints to combat the ill-posedness of finite-dimensional discrete inverse problems. In addition, the SAIR inverse problem can be converted into the probability estimation of the reconstructed BT. Furthermore, in application to both uniformly and nonuniformly spaced arrays, our method can obtain the optimal solution adaptively and avoid the dilemma of choosing the optimal regularization parameter. Finally, simulation results illustrating the effectiveness and performance of the proposed method are provided.
机译:合成孔径成像辐射计(SAIRs)的反问题已被证明没有很好地解决。正则化方法对于在重建辐射亮度温度(BT)图时提供独特而稳定的解决方案至关重要。与确定性方法不同,通过参考贝叶斯推理规则提出了一种新方法,该方法提供了有规则约束的概率模型来对抗有限维离散逆问题的不适定性。另外,可以将SAIR反问题转换为重构BT的概率估计。此外,在均匀和非均匀排列的阵列中,我们的方法都能自适应地获得最优解,避免了选择最优正则化参数的难题。最后,提供了仿真结果,说明了所提方法的有效性和性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号