首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Remote Sensing Image Classification Using Genetic-Programming-Based Time Series Similarity Functions
【24h】

Remote Sensing Image Classification Using Genetic-Programming-Based Time Series Similarity Functions

机译:基于遗传程序的时间序列相似度函数的遥感图像分类

获取原文
获取原文并翻译 | 示例

摘要

In several applications, the automatic identification of regions of interest in remote sensing images is based on the assessment of the similarity of associated time series, i.e., two regions are considered as belonging to the same class if the patterns found in their spectral information observed over time are somewhat similar. In this letter, we investigate the use of a genetic programming (GP) framework to discover an effective combination of time series similarity functions to be used in remote sensing classification tasks. Performed experiments in a Forest-Savanna classification scenario demonstrated that the GP framework yields effective results when compared with the use of traditional widely used similarity functions in isolation.
机译:在一些应用中,遥感图像中感兴趣区域的自动识别是基于对相关时间序列相似性的评估,即,如果在其光谱信息中发现的模式超过2个,则认为两个区域属于同一类别。时间有些相似。在这封信中,我们调查了遗传编程(GP)框架的使用,以发现时间序列相似性函数的有效组合,以用于遥感遥感分类任务。在Forest-Savanna分类方案中进行的实验表明,与单独使用传统的广泛使用的相似性函数相比,GP框架可产生有效的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号