首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Distilling Before Refine: Spatio-Temporal Transfer Learning for Mapping Irrigated Areas Using Sentinel-1 Time Series
【24h】

Distilling Before Refine: Spatio-Temporal Transfer Learning for Mapping Irrigated Areas Using Sentinel-1 Time Series

机译:在精炼前蒸馏:使用哨兵-1时间序列进行绘制灌溉区域的时空转移学习

获取原文
获取原文并翻译 | 示例

摘要

This letter proposes a deep learning model to deal with the spatial transfer challenge for the mapping of irrigated areas through the analysis of Sentinel-1 data. First, a convolutional neural network (CNN) model called "Teacher Model" is trained on a source geographical area characterized by a huge volume of samples. Then, this model is transferred from the source area to the target area characterized by a limited number of samples. The transfer learning framework is based on a distill and refine strategy, in which the teacher model is first distilled into a student model and, successively, refined by data samples coming from the target geographical area. The proposed strategy is compared with different approaches including a random forest (RF) classifier trained on the target data set and a CNN trained on the source data set and directly applied on the target area as well as several CNN classifiers trained on the target data set. The evaluation of the performed transfer strategy shows that the "distill and refine" framework obtains the best performance compared with other competing approaches. The obtained findings represent a first step toward the understanding of the spatial transferability of deep learning models in the Earth observation domain.
机译:这封信提出了一个深入的学习模式,通过分析Sentinel-1数据来处理对灌溉区域的映射的空间转移挑战。首先,卷积神经网络(CNN)型号被称为“教师模型”的培训,以巨大的样本为特征在于源地理区域。然后,该模型从源区域传输到以有限数量的样本为特征的目标区域。转移学习框架基于蒸馏和精炼策略,其中首先将教师模型蒸馏到学生模型,并连续地通过来自目标地理区域的数据样本精制。将所提出的策略与不同方法进行比较,包括在目标数据集上培训的随机森林(RF)分类器,以及在源数据集上培训的CNN,并且直接应用于目标区域以及在目标数据集上训练的几个CNN分类器。对执行的转移策略的评估表明,与其他竞争方法相比,“蒸馏和精炼”框架获得了最佳性能。所获得的结果代表了理解地球观测结构域中深入学习模型的空间可转换性的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号