首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Semisupervised Feature Extraction Based on Collaborative Label Propagation for Hyperspectral Images
【24h】

Semisupervised Feature Extraction Based on Collaborative Label Propagation for Hyperspectral Images

机译:基于Hyperspectral图像的协作标签传播的半质化特征提取

获取原文
获取原文并翻译 | 示例

摘要

This letter presents a semisupervised feature extraction based on collaborative label propagation (SSCLP) for hyperspectral images (HSIs). SSCLP first proposes a novel collaborative label propagation method to predict the labels of unlabeled data that are termed weak labels. Then, SSCLP combines the known labels and the predicted weak labels to construct two new discriminative matrices. Finally, the discriminative matrices are utilized to find an optimal transformation matrix to achieve feature extraction for HSIs. The proposed SSCLP not only preserves the compactness of intraclass and the separability of interclass but also explores the weak labels information and the local neighbor information of unlabeled data. Experiments on the Pavia University and Kennedy Space Center datasets demonstrate that the proposed SSCLP has a better performance than other related methods.
机译:基于Hyperspectral Images(HSIS)的协作标签传播(SSCLP),这封信提出了半质化特征提取。 SSCLP首先提出了一种新颖的协作标签传播方法,以预测被称为弱标签的未标记数据的标签。然后,SSCLP结合了已知的标签和预测的弱标记来构建两个新的判别矩阵。最后,利用判别矩阵来找到最佳变换矩阵以实现HSI的特征提取。所提出的SSCLP不仅保留了跨越的紧凑性和杂交的可分离性,而且还探索了未标记数据的弱标签信息和局部邻居信息。对帕维亚大学和肯尼迪航天中心数据集的实验表明,所提出的SSCLP比其他相关方法更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号