首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Band Grouping SuperPCA for Feature Extraction and Extended Morphological Profile Production From Hyperspectral Images
【24h】

Band Grouping SuperPCA for Feature Extraction and Extended Morphological Profile Production From Hyperspectral Images

机译:频带分组SuperPCA用于特征提取和高光谱图像的延长形态学型材生产

获取原文
获取原文并翻译 | 示例

摘要

A variety of dimensionality reduction methods have been proposed in the literature to address the issue of information redundancy in hyperspectral images. A recent one, named superpixel-based principal components analysis (SuperPCA), integrates the superpixel segmentation algorithm and principal components analysis (PCA) to exploit contextual information in the process of feature extraction. The present letter aims at improving SuperPCA method via a band grouping technique. It also provides appropriate base images for the production of extended morphological profiles (EMPs). This proposed method was applied to two real case studies and the results proved an overall accuracy improvement of 8% over the SuperPCA. Furthermore, the EMPs resulted from our proposed method could reach to better spatial-spectral classification results in comparison to those methods that apply conventional base images for EMPs production.
机译:在文献中提出了各种维数减少方法,以解决高光谱图像中信息冗余问题。最近一个名为基于SuperPixel的主成分分析(SuperPCA),集成了Superpixel分段算法和主成分分析(PCA)来利用特征提取过程中的上下文信息。本信旨在通过频带分组技术改善SuperPCA方法。它还为生产延长形态谱(EMPS)提供了适当的基础图像。将该方法应用于两个真实的案例研究,结果证明了超级PCA的总体精度提高了8%。此外,由我们所提出的方法产生的EMPS可以达到更好的空间光谱分类,与应用EMPS生产的传统基础图像的方法相比,结果导致结果相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号