首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Saliency-Driven Oil Tank Detection Based on Multidimensional Feature Vector Clustering for SAR Images
【24h】

Saliency-Driven Oil Tank Detection Based on Multidimensional Feature Vector Clustering for SAR Images

机译:基于多维特征向量聚类的显着驱动的油箱检测SAR图像

获取原文
获取原文并翻译 | 示例

摘要

A novel saliency-driven oil tank detection method based on multidimensional feature vector clustering (MFVC) is proposed in this letter for synthetic aperture radar (SAR) images. There are three major contributions: 1) a specially designed MFVC method, which is suitable for SAR images without true colors, is employed to detect oil tanks roughly by saliency analysis. Five important complementary features, including intensity, texture, structure, and 2-D coordinates, form a 5-D vector, and then an unsupervised strategy is employed for clustering the 5-D feature vectors to acquire the saliency map; 2) For accurate location, the shape limit coefficient is added to the original active contour model to extract contours of top surfaces; and 3) according to the relations of top, bottom, and the brightest arch, bottoms of oil tanks are computed precisely. Experiments are conducted in two aspects: evaluation for saliency analysis, and for bottom location. Results show that the MFVC method outperforms competing methods in maintaining complete oil tanks and accurate boundaries, and removing the background clutter as much as possible.
机译:在该字母中提出了一种基于多维特征向量聚类(MFVC)的新型显着的驱动油箱检测方法,用于合成孔径雷达(SAR)图像。有三个主要贡献:1)专门设计的MFVC方法,适用于没有真颜色的SAR图像,用于大致通过显着性分析来检测油箱。五种重要的互补特征,包括强度,纹理,结构和2-D坐标,形成5-D向量,然后采用无监督的策略来聚类5-D特征向量以获取显着性图; 2)对于精确的位置,形状限制系数被添加到原始的主动轮廓模型中以提取顶表面的轮廓; 3)根据顶部,底部和最亮的拱形的关系,精确地计算油箱的底部。实验是在两个方面进行的:显着分析和底部位置的评估。结果表明,MFVC方法在维护完整的油箱和准确的边界方面优于竞争方法,以及尽可能地去除背景杂波。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号