首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >A Time Picking Method for Microseismic Data Based on LLE and Improved PSO Clustering Algorithm
【24h】

A Time Picking Method for Microseismic Data Based on LLE and Improved PSO Clustering Algorithm

机译:基于LLE和改进的PSO聚类算法的微震数据时间选取方法

获取原文
获取原文并翻译 | 示例

摘要

Time picking is of great concern in the processing of microseismic data. However, the traditional method based on time/frequency domain cannot pick the first arrival time accurately in low signal-to-noise ratio. Besides, the traditional time picking methods which based on clustering are sensitive to selecting the initial clustering centers and easy to converge to local optimal value. To solve the above problems, we propose a time picking method for microseismic data based on locally linear embedding (LLE) and improved particle swarm optimization (PSO) clustering algorithm. First, the LLE algorithm can obtain the inherent characteristics and the rules hidden in high-dimensional data by calculating Euclidean distances and reconstruction weights between microseismic data points. The input is represented in a low-dimensional form. Then, the improved PSO clustering algorithm is used to select the optimal clustering centers from low-dimensional data through global search method. After that, the low-dimensional data can be classified into noise cluster and signal cluster by the K-means algorithm. Finally, the initial time of the signal cluster can be considered as the first arrival time of microseismic data. The experimental results show that accuracy of the proposed method is higher than that of the improved PSO clustering algorithm, Akaike information criterion method, and short- and long-time window ratio method (short-time window averaging/long-time window averaging).
机译:在微地震数据的处理中,时间选择是非常重要的。然而,基于时/频域的传统方法无法在低信噪比的情况下准确地选择首次到达时间。此外,传统的基于聚类的时间选择方法对选择初始聚类中心很敏感,并且易于收敛到局部最优值。为解决上述问题,我们提出了一种基于局部线性嵌入(LLE)和改进的粒子群优化(PSO)聚类算法的微地震数据时间选取方法。首先,LLE算法可以通过计算微地震数据点之间的欧式距离和重建权重来获得高维数据中固有的特征和规则。输入以低维形式表示。然后,使用改进的PSO聚类算法通过全局搜索方法从低维数据中选择最佳聚类中心。之后,可以通过K-means算法将低维数据分为噪声簇和信号簇。最后,信号簇的初始时间可以被认为是微地震数据的首次到达时间。实验结果表明,与改进的PSO聚类算法,Akaike信息准则方法以及短时和长时窗口比率方法(短时窗口平均/长时窗口平均)相比,该方法的准确性更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号