【24h】

A Improved Clustering Analysis Method Based on Fuzzy C-Means Algorithm by Adding PSO Algorithm

机译:添加PSO算法的改进的基于模糊C-均值算法的聚类分析方法

获取原文

摘要

Fuzzy c-means algorithm (FCM) is one of the most widely used clustering methods for modern medical image segmentation applications. However the conventional FCM algorithm has certain possibilities of converging to a local minimum of the objective function, thus lead to undesired segmentation results. To address this issue, an improved FCM which is based on clustering centroids updates with the use of particle swarm optimization (PSO) is proposed in this paper. This algorithm is designed to support multidimensional feature data and be accessible through parallel computation. The experimental results suggest that, compared to the conventional FCM algorithm, the proposed algorithm leads to higher chances of global optimum clustering and is less computationally intensive when large clustering number is needed.
机译:模糊c均值算法(FCM)是现代医学图像分割应用程序中使用最广泛的聚类方法之一。然而,常规的FCM算法具有收敛到目标函数的局部最小值的某些可能性,因此导致不期望的分割结果。为了解决这个问题,本文提出了一种改进的FCM,该算法基于聚类质心更新并使用粒子群优化(PSO)。该算法旨在支持多维特征数据,并且可以通过并行计算访问。实验结果表明,与传统的FCM算法相比,该算法导致全局最优聚类的机会更高,并且在需要大量聚类数时计算量较小。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号