首页> 外文期刊>Networking, IEEE/ACM Transactions on >Decentralized Algorithms for Adaptive Pricing in Multiclass Loss Networks
【24h】

Decentralized Algorithms for Adaptive Pricing in Multiclass Loss Networks

机译:多类损失网络中自适应定价的分散算法

获取原文
获取原文并翻译 | 示例

摘要

We introduce a set of algorithms for pricing calls on a multiclass loss network with unknown demand elasticity. The algorithms are design to observe the network and use real-time pricing to estimate demand elasticity and other unknown system parameters, and modify per-class prices in order to improve the long-run average revenue. The algorithms can be implemented online, have small memory and computational requirements, and are robust to parametric uncertainty. We provide sufficient conditions for the convergence of the algorithms to a local optimum, and illustrate their performance through numerous numerical examples. The paper also discusses how these algorithms can be distributed to multiple agents on a per-class basis, and provide bounds to error estimates introduced by our decoupling approach.
机译:我们引入了一组算法,用于在未知需求弹性的多类损失网络上对呼叫定价。这些算法旨在观察网络并使用实时定价来估计需求弹性和其他未知系统参数,并修改每类价格以提高长期平均收入。该算法可以在线实现,具有较小的内存和计算要求,并且对参数不确定性具有鲁棒性。我们为算法收敛到局部最优提供了充分的条件,并通过大量的数值示例说明了它们的性能。本文还讨论了如何在每个类的基础上将这些算法分配给多个代理,并为我们的解耦方法引入的错误估计提供了界限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号