首页> 外文期刊>Networking, IEEE/ACM Transactions on >Parametric Methods for Anomaly Detection in Aggregate Traffic
【24h】

Parametric Methods for Anomaly Detection in Aggregate Traffic

机译:总流量异常检测的参数化方法

获取原文
获取原文并翻译 | 示例

摘要

This paper develops parametric methods to detect network anomalies using only aggregate traffic statistics, in contrast to other works requiring flow separation, even when the anomaly is a small fraction of the total traffic. By adopting simple statistical models for anomalous and background traffic in the time domain, one can estimate model parameters in real time, thus obviating the need for a long training phase or manual parameter tuning. The proposed bivariate parametric detection mechanism (bPDM) uses a sequential probability ratio test, allowing for control over the false positive rate while examining the tradeoff between detection time and the strength of an anomaly. Additionally, it uses both traffic-rate and packet-size statistics, yielding a bivariate model that eliminates most false positives. The method is analyzed using the bit-rate signal-to-noise ratio (SNR) metric, which is shown to be an effective metric for anomaly detection. The performance of the bPDM is evaluated in three ways. First, synthetically generated traffic provides for a controlled comparison of detection time as a function of the anomalous level of traffic. Second, the approach is shown to be able to detect controlled artificial attacks over the University of Southern California (USC), Los Angeles, campus network in varying real traffic mixes. Third, the proposed algorithm achieves rapid detection of real denial-of-service attacks as determined by the replay of previously captured network traces. The method developed in this paper is able to detect all attacks in these scenarios in a few seconds or less.
机译:与需要流分离的其他工作相比,本文提出了仅使用聚合流量统计信息来检测网络异常的参数方法,即使异常情况仅占总流量的一小部分。通过为时域中的异常和背景流量采用简单的统计模型,可以实时估计模型参数,从而避免了漫长的训练阶段或手动调整参数的需求。拟议的双变量参数检测机制(bPDM)使用顺序概率比检验,可以控制假阳性率,同时检查检测时间与异常强度之间的折衷。此外,它同时使用了流量速率和数据包大小统计信息,从而产生了消除大多数误报的双变量模型。使用比特率信噪比(SNR)度量对方法进行了分析,该度量被证明是用于异常检测的有效度量。 bPDM的性能可以通过三种方式进行评估。首先,合成生成的流量根据流量的异常级别提供检测时间的受控比较。其次,该方法被证明能够检测到各种实际流量混合情况下对南加州大学(USC),洛杉矶和校园网络的受控人为攻击。第三,所提出的算法实现了对真实的拒绝服务攻击的快速检测,这是由先前捕获的网络跟踪的重放所确定的。本文开发的方法能够在几秒钟或更短的时间内检测到这些情况下的所有攻击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号