首页> 外文期刊>IEEE/ACM Transactions on Networking >A Game-Theoretic Approach to Stable Routing in Max-Min Fair Networks
【24h】

A Game-Theoretic Approach to Stable Routing in Max-Min Fair Networks

机译:最大最小公平网络中稳定路由的博弈论方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a game-theoretic study of the problem of routing in networks with max-min fair congestion control at the link level. The problem is formulated as a noncooperative game, in which each user aims to maximize its own bandwidth by selecting its routing path. We first prove the existence of Nash equilibria. This is important, because at a Nash equilibrium (NE), no user has any incentive to change its routing strategy—leading to a stable state. In addition, we investigate how the selfish behavior of users may affect the performance of the network as a whole. We next introduce a novel concept of observed available bandwidth on each link. It allows a user to find a path with maximum bandwidth under max-min fair congestion control in polynomial time, when paths of other users are fixed. We then present a game-based algorithm to compute an NE and prove that by following the natural game course, the network converges to an NE. Extensive simulations show that the algorithm converges to an NE within 10 iterations and also achieves better fairness compared to other algorithms .
机译:在本文中,我们对在链路级别具有最大-最小公平拥塞控制的网络中的路由问题进行了博弈论研究。该问题被表述为非合作游戏,其中每个用户旨在通过选择其路由路径来最大化自己的带宽。我们首先证明纳什均衡的存在。这很重要,因为在Nash平衡(NE)时,没有用户有任何动机来更改其路由策略-从而达到稳定状态。此外,我们研究了用户的自私行为如何可能影响整个网络的性能。接下来,我们介绍一个观察每个链路上可用带宽的新颖概念。当其他用户的路径固定时,允许用户在多项式时间内的最大最小公平拥塞控制下找到带宽最大的路径。然后,我们提出一种基于游戏的算法来计算NE,并证明通过遵循自然游戏过程,网络可以收敛到NE。大量的仿真结果表明,与其他算法相比,该算法在10次迭代中收敛到一个NE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号