首页> 外文期刊>IEEE/ACM Transactions on Networking >On the Critical Delays of Mobile Networks Under Lévy Walks and Lévy Flights
【24h】

On the Critical Delays of Mobile Networks Under Lévy Walks and Lévy Flights

机译:LévyWalk和LévyFlight下的移动网络严重延迟

获取原文
获取原文并翻译 | 示例

摘要

Delay-capacity tradeoffs for mobile networks have been analyzed through a number of research works. However, Lévy mobility known to closely capture human movement patterns has not been adopted in such work. Understanding the delay-capacity tradeoff for a network with Lévy mobility can provide important insights into understanding the performance of real mobile networks governed by human mobility. This paper analytically derives an important point in the delay-capacity tradeoff for Lévy mobility, known as the critical delay. The critical delay is the minimum delay required to achieve greater throughput than what conventional static networks can possibly achieve (i.e., O(1/√n) per node in a network with n nodes). The Lévy mobility includes Lévy flight and Lévy walk whose step-size distributions parametrized by α ∈ (0,2] are both heavy-tailed while their times taken for the same step size are different. Our proposed technique involves: 1) analyzing the joint spatio-temporal probability density function of a time-varying location of a node for Lévy flight, and 2) characterizing an embedded Markov process in Lévy walk, which is a semi-Markov process. The results indicate that in Lévy walk, there is a phase transition such that for α ∈ (0,1), the critical delay is always Θ(n[1/2]), and for α ∈ [1,2] it is Θ(n[(α)/2]). In contrast, Lévy flight has the critical delay Θ(n[(α)/2]) for α ∈ (0,2].
机译:通过许多研究工作,分析了移动网络的延迟容量折衷。然而,这项工作并未采用众所周知的紧密捕捉人类运动模式的Levy机动性。了解具有Le'vy移动性的网络的延迟容量折衷可以为理解由人类移动性控制的真实移动网络的性能提供重要的见解。本文分析性地得出了Levy运输的时延-容量折衷中的一个重要点,称为临界时延。关键延迟是实现比常规静态网络可能达到的吞吐量更高的吞吐量所需的最小延迟(即,在具有n个节点的网络中,每个节点O(1 /√n))。 Levy的机动性包括Levy的飞行和Levy的步行,它们的步长分布由α∈(0,2]参数化,但步长相同的步长不同,我们提出的技术包括:1)分析关节Levy飞行节点的时变位置的时空概率密度函数,以及2)表征Levy步行中的嵌入式Markov过程,这是一个半Markov过程。结果表明,在Levy步行中存在一个相变,使得对于α∈(0,1),临界延迟始终为Θ(n [1/2] ),对于α∈ [1,2]为Θ(n [(α)/ 2] )。相比之下,Levy航班对α∈(0,2]具有临界延迟Θ(n [(α)/ 2] )。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号