首页> 外文期刊>Networking, IEEE/ACM Transactions on >Topology Control for Effective Interference Cancellation in Multiuser MIMO Networks
【24h】

Topology Control for Effective Interference Cancellation in Multiuser MIMO Networks

机译:多用户MIMO网络中有效干扰消除的拓扑控制

获取原文
获取原文并翻译 | 示例

摘要

In multiuser multiple-input–multiple-output (MIMO) networks, receivers decode multiple concurrent signals using successive interference cancellation (SIC). With SIC, a weak target signal can be deciphered in the presence of stronger interfering signals. However, this is only feasible if each strong interfering signal satisfies a signal-to-noise-plus-interference ratio (SINR) requirement. This necessitates the appropriate selection of a subset of links that can be concurrently active in each receiver's neighborhood; in other words, a subtopology consisting of links that can be simultaneously active in the network is to be formed. If the selected subtopologies are of small size, the delay between the transmission opportunities on a link increases. Thus, care should be taken to form a limited number of subtopologies. We find that the problem of constructing the minimum number of subtopologies such that SIC decoding is successful with a desired probability threshold is NP-hard. Given this, we propose MUSIC, a framework that greedily forms and activates subtopologies in a way that favors successful SIC decoding with a high probability. MUSIC also ensures that the number of selected subtopologies is kept small. We provide both a centralized and a distributed version of our framework. We prove that our centralized version approximates the optimal solution for the considered problem. We also perform extensive simulations to demonstrate that: 1) MUSIC forms a small number of subtopologies that enable efficient SIC operations; the number of subtopologies formed is at most 17% larger than the optimum number of topologies, discovered through exhaustive search (in small networks); 2) MUSIC outperforms approaches that simply consider the number of antennas as a measure for determining the links that can be simultaneously active. Specifically, MUSIC provides throughput improvements of up to four times, as compared to such an approach, in various topological settings. The- improvements can be directly attributable to a significantly higher probability of correct SIC based decoding with MUSIC.
机译:在多用户多输入多输出(MIMO)网络中,接收器使用连续干扰消除(SIC)解码多个并发信号。使用SIC,可以在存在较强干扰信号的情况下破译弱目标信号。但是,这仅在每个强干扰信号满足信噪比干扰比(SINR)要求的情况下才可行。这就需要适当选择可以在每个接收者邻域中同时激活的链路子集;换句话说,将形成由可同时在网络中活动的链接组成的子拓扑。如果所选子拓扑的大小较小,则链路上传输机会之间的延迟会增加。因此,应注意形成有限数量的子拓扑。我们发现,构造最小数目的子拓扑以使SIC解码以所需的概率阈值成功完成的问题是NP-难的。鉴于此,我们提出了MUSIC,它是一种贪婪地形成和激活子拓扑的框架,其支持高可能性成功进行SIC解码的方式。 MUSIC还确保所选子拓扑的数量保持较小。我们提供了框架的集中式版本和分布式版本。我们证明了我们的集中式版本可以解决所考虑问题的最佳解决方案。我们还进行了广泛的仿真,以证明:1)MUSIC形成了少数子拓扑,可以实现有效的SIC操作;通过穷举搜索(在小型网络中)发现的最佳拓扑数目最多比最佳拓扑数目大17%; 2)MUSIC的性能优于仅考虑天线数量作为确定可同时激活的链路的方法。特别是,与这种方法相比,MUSIC在各种拓扑设置中的吞吐量最多提高了四倍。这些改进可以直接归因于使用MUSIC进行基于SIC的正确解码的明显更高的概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号